题目分享V
题意:现在两个人做游戏,每个人刚开始都是数字1,谁赢了就能乘以k^2,输的乘以k(k可以是任意整数,每次不一定相同)现在给你最终这两个人的得分,让你判断是否有这个可能,有可能的话Yes,否则No。
分析:这题其实想起来也很好想,写起来也很好写,主要还是分享一下处理类似细节的方法
首先还是先回归到这个题,显然如果满足条件,首先a*b=x³,a,b分别为这两人的最终得分,然后考虑一下还需满足什么性质
我们还是从只有一轮开始考虑,a=k²,b=k,a*b=k³,这里就很容易想到几种判断方法,比如a=b²,或者a/b=k=³√a*b,等等,只要这个判断方法只与a与b有关就行(废话)
再考虑两轮的情况,a=k1²*k2²,b=k1*k2,这看上去上面两种方法都会判断为yes,答案也真就是yes
但如果a=k1²*k2,b=k1*k2²,这样看上去好像两种方法都会判断为no,而正确结果应该是yes,
那么到底应该怎么做呢?
不难发现的是,无论这两个数怎么变换,a=k1^c1*k2^c2*k3^c3……*kn^cn,b=a=k1^d1*k2^d2*k3^d3……*kn^dn,其中ci+di=3
a和b都是在k1*k2*k3*……*kn到k1²*k2²*k3²*……*kn²之间浮动,而且他们显然都满足一个性质即能整除k1*k2*……*kn=³√a*b、*
那么我们大胆假设,满足a*b=x³且a,b能整除³√a*b的数一定满足条件吗
/* 这对于k1,k2,……,kn互质来说一定是显然成立的,但如果不一定互质,那可能很多人就有些犹豫或者迷糊
既然这样,那么我们就把不互质的转化成互质的
很容易想到,每一个ki^ci或di都会变成p1^e1^ci*p2^e2^ci*……*pn^en^ci,当然这里的pi是质数,而ei则是非负整数,当然上面的结论也要搬过来,e1*ci+e1*di=3(这里前面一个e1是指a中ki的系数,后一个是b中的)
a=p1^f1*p2^f2*p3^f3……*pn^fn,b=p1^g1*p2^g2*p3^g3……*pn^gn,这里的fi=每个ki的ei与ci的乘积,(写起来变量名太容易冲突了,理解就行)
当然,联系上面的结论,很容易得到fi+gi=3h,
说了这么多,可能很多人都忘了我们要干啥了,现在我们把不互质的转化成了互质的,显然这里面fi的最小值还是h,所以也就得证了
*/ 当然,我这上面证明的有点乱,但其实真的很好证,当然如果不会证也没关系,而且今天我主要分享的也不是这个,这个/* */的大可以不看
先再梳理一下,我们只需要保证a*b=x³且a%x==0&&b%x==0即可
那么如何判断a*b是不是立方数呢?
当然我们可以二分,不过cmath里面pow这个函数给了我们方便
有些人可能只知道p=pow(q,2),不知道p=pow(q,1/2)
对,这其实就与sqrt等价了
那么这个题我求出了pow(a*b,1/3)然后呢?
只需要判断这个数是不是整数即可,那这又咋判断呢?
  首先我们要知道的是double是有精度的,一般为6-7位,具体是什么意思呢?
这显然没啥问题

这问题就出来了,而且这不光是在小数的时候,整数运算虽然问题不是很大,但也要小心

当然,不需要太过紧张,首先我这里y是1e20,都超过longlong的范围了,而上面的999999在你保留6,7位的时候也是完全没有影响的,但却有可能产生0.000001的误差
这在平日的输出结果中没有任何影响,但在判断是否相等或者将其赋值给int以求取整时便会有着灾难性的问题出现,比如


这里就需要利用我们的精度了
如果我们要表达y==q要改成abs(y-q)<=0.000001

而如果我们要表达k=(int)q要改成k=(int)(q+0.000001)

所以又说了这么多,再回到开始的问题,我们需要判断这个数是否是整数,那么就可以用abs(x-(int)(x+0.000001))<=0.000001来判断
还有几点要注意的,
1. a*b可能爆int
2. pow里面后面那个要写1.0/3,如果写1/3的话就成0了(1/3是int类型的)
3. Yes还是YES还是yes,No还是NO还是no看清楚
代码:
#include<cstdio>
#include<cmath>
using namespace std; #define ll long long const double minlf=0.000001; int pd(ll x)
{
double sq=pow(x,1.0/);
int sqr=(int)(sq+minlf);
if(abs((double)sqr-sq)<=minlf) return sqr;
else return ;
} int main()
{
int n,x,y;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&x,&y);
int now=pd((ll)x*y);
if(now&&x%now==&&y%now==) printf("Yes\n");
else printf("No\n");
}
return ;
}
题目分享V的更多相关文章
- 题目分享E 二代目
		
题意:一棵点数为n的树,每个节点有点权,要求在树中中找到一个最小的x,使得存在一个点满足max(该点点权,该点相邻的点的点权+1,其他点的点权+2)=x 分析:首先要能把题目转化为上述题意 首先题目让 ...
 - 题目分享T
		
题意:蛐蛐国里现在共有n只蚯蚓(n为正整数).每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为a_i(i=1,2,...,n),并保证所有的长度都是非负整数(即:可 能存在长度为0的蚯蚓).每一秒,神刀手会 ...
 - 2019年腾讯PHP程序员面试题目分享
		
有需要学习交流的友人请加入交流群的咱们一起,有问题一起交流,一起进步!前提是你是学技术的.感谢阅读! 点此加入该群jq.qq.com 1. php 的垃圾回收机制 PHP 可以自动进行内存管理,清除 ...
 - 20190924-LeetCode解数独题目分享
		
解决数独 题目描述 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次. 数字 1-9 在每一列只能出现一次. 数字 1-9 在每一个以 ...
 - 题目分享F 二代目
		
题意:T个点R种双向边,P种单向边,求点S到每个点的最短距离 分析:(这再看不出来是spfa就该**了) 首先,这题能否用spfa就看他是否有负环呗,显然,双向边的权值非负,单向边还有个啥政策,总之显 ...
 - 题目分享D 二代目
		
题意:给定一个T条边的无向图,求S到E恰好经过N条边的最短路径 T≤100 N≤1000000 分析:(据说好像假期学长讲过) 首先很容易想到的是dp[i][j][k]表示从i到j经过k条边的最短路径 ...
 - 题目分享C 二代目
		
题意:一个数列是由 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6.....组成,也就是1-1,1-2,1-3......并且如果遇到多位数也要拆成数字比如1-10 ...
 - 题目分享Y
		
题意:给出一个n个点n条边的图且不一定连通(原题面为每个节点出度为1),相邻节点不能同时被选,每个节点有其对应价值,求最多能获得多少价值?n<=1e6,val[i]<=1e6 分析:很容易 ...
 - 题目分享X
		
题意:一张票有n位数,如果这张票的前一半数字的和等于后一半数字的和(n一定是偶数),就称这张票为快乐票.有些数被擦除了,标记为’?’(’?‘的个数也是偶数),现在Monocarp 和 Bicarp 进 ...
 
随机推荐
- Python 1基础语法一(注释、行与缩进、多行语句、空行和代码组)
			
一.注释Python中单行注释以 # 开头,实例如下: # 第一个注释 print ("Hello, Python!") # 第二个注释 输出结果为: ============== ...
 - C++语言实现双向链表
			
这篇文章是关于利用C++模板的方式实现的双向链表以及双向链表的基本操作,在之前的博文C语言实现双向链表中,已经给大家分析了双向链表的结构,并以图示的方式给大家解释了双向链表的基本操作.本篇文章利用C+ ...
 - 用ASP.NET MVC5 +SQLSERVER2014搭建多层架构的数据库管理系统
			
用http://ASP.NET MVC5 +SQLSERVER2014搭建多层架构的数据库管理系统 背景:前段时间,给一家公司做外包(就是图标是朵菊花那家).为了尽快实现交付,网上四处寻找适合中小型企 ...
 - Prometheus 监控MySQL
			
目录 0.简介 1.mysql_exporter部署 2.mysql报警规则 0.简介 文中主要监控MySQL/MySQL主从信息 版本:mysql-5.7,mysql_exporter-0.12.1 ...
 - 【高并发】不废话,言简意赅介绍BlockingQueue
			
写在前面 最近,有不少网友留言提问:在Java的并发编程中,有个BlockingQueue,它是个阻塞队列,为何要在并发编程里使用BlockingQueue呢?好吧,今天,就临时说一下Blocking ...
 - Kubectl  patch命令使用
			
kubectl patch 使用(patch)补丁修改.更新资源的字段. 支持JSON和YAML格式. 请参阅https://htmlpreview.github.io/?https://github ...
 - javascript的数据类型(基本和复杂)
			
一.基本数据类型 string number boolean 二.复杂数据类型 Array Date object RegExp Sting Number Boolean 核心:Object fun ...
 - [算法总结]康托展开Cantor Expansion
			
目录 一.关于康托展开 1.什么是康托展开 2.康托展开实现原理 二.具体实施 1.模板 一.关于康托展开 1.什么是康托展开 求出给定一个由1n个整数组成的任意排列在1n的全排列中的位置. 解决这样 ...
 - 分布式 and 集群
			
集群是个物理形态,强调个体和群体之间的联系: 同一个业务部署在多个服务器上,形成的逻辑上的整体. 分布式是个工作方式.强调请求和处理直接的分发状况: 一个业务分拆多个子业务,部署在不同的服务器上,通过 ...
 - 发现一款手绘可视化神器!Python绘图还在用Matplotlib?out了 !
			
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取htt ...