题目传送门

心路历程:

每想到一种思路,就有一种要做出来的感觉。但一接着想就会发现这种方法有一些极小的问题,但是我没法解决。。。

于是就再换思路。。。

最后在请教了出题人神仙zcq之后,终于做出来了 ~~ (面向数据编程 ~~

口胡一下思路:

首先,我们手玩一波柿子。

\[\sum_{x=0}^{n}\prod_{y=0}^{x}\frac{x}{kx+y-x}=
\]

\[=\prod_{x=0}^n\prod_{y=0}^{k}(\frac{x}{kx+y-x}+1)
\]

\[=\prod_{x=0}^n\prod_{y=0}^{k}\frac{kx+y}{kx+y-x}
\]

\[=\prod_{x=0}^{n}\frac{\prod_{i=1}^x(kx+k-i)}{\prod_{j=1}^x(kx-j)}
\]

\[=\frac{\prod_{i=1}^{n-1}(kn-i)}{\prod_{j=1}^{k-1}(kj-j)}
\]

\[=\frac{(nk-1)!}{(nk-n-1)!n!(k-1)^n}
\]

然后我们看怎么求这个东西。

大概就是把分子和分母写成

\[\frac{p=a*m^x}{q=b*m^y}
\]

(m是模数)的形式。

然后。。。

如果\(x>y\),那么约分后\(p\equiv 0\),所以\(a=0\)即可,输出\(0\)

如果\(x<y\),那么约分后\(q\equiv 0\),所以无论\(a\)取什么值,都不可能满足条件,输出\(-1\)

如果\(x=y\),那么\(p\equiv 0,q\equiv 0\),p!=0,q!=0,这样可以用逆元求出值

额,对,出处是i_m_a_的博客

(还有,他的博客哪里写成了p=0,q=0,而不是同余(大雾

emmmm..

Code

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll; const ll P = 1145141;
ll T;
ll n,k;
ll f[P+1]; inline void readx(ll &x)
{
x=0;
int s=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')
s=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=s;
} inline void pre()
{
f[0]=1;
for(int i=1;i<P;++i)
f[i]=f[i-1]*i%P;
} inline ll qpow(ll a,ll b)
{
ll x=1;
while(b)
{
if(b&1)
x=x*a%P;
a=a*a%P;
b>>=1;
}
return x;
} inline ll inv(ll x)
{
return qpow(x,P-2);
} int main()
{
pre();
readx(T);
while(T--)
{
readx(n);readx(k);
ll a_mo=1,a_de=1,x_mo=0,x_de=0; ll r=n*k-1;
while(r)
{
a_mo=a_mo*f[r%P]%P;
r/=P;
x_mo+=r;
}
a_mo=a_mo*qpow(f[P-1],x_mo)%P;
//处理分子 ll tmp=0;
r=k-1;
while(r%P==0)
{
++tmp;
r/=P;
}
tmp*=(n-1);
a_de=qpow(r,n-1);
x_de+=tmp; r=n*k-n;
tmp=0;
while(r)
{
a_de=a_de*f[r%P]%P;
r/=P;
tmp+=r;
}
a_de=a_de*qpow(f[P-1],tmp)%P;
x_de+=tmp; r=n-1;
tmp=0;
while(r)
{
a_de=a_de*f[r%P]%P;
r/=P;
tmp+=r;
}
a_de=a_de*qpow(f[P-1],tmp)%P;
x_de+=tmp; //处理分母 ll ans=a_mo*inv(a_de)%P;
if(x_mo>x_de)
printf("0\n");
else if(x_mo<x_de)
printf("-1\n");
else
printf("%lld\n",ans);
}
return 0;
}

洛谷 P5509 派遣的更多相关文章

  1. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  2. 洛谷 [P1552] 派遣

    树型DP + 可并堆 非常清楚的想到是树型DP, 但是如何维护最小值, 于是就去新学了可并堆 #include <iostream> #include <cstring> #i ...

  3. 洛谷1552 [APIO2012]派遣

    洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...

  4. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  5. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  6. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  7. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  8. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  9. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

随机推荐

  1. CSS - 表格细线边框

    通过 border-collapse: collapse cellpadding="0", cellspacing= "0" 实现 <!DOCTYPE h ...

  2. jquery怎么获取当前标签下的子标签

    1.var num1=$("ul > a:eq(0)").attr("ID");2.var num2=$("ul").children ...

  3. LUA拾翠

    一.函数 1.格式 optional_function_scope function function_name( argument1, argument2, argument3..., argume ...

  4. Array数组的方法总结

    1.检测数组 自从ECMAScript3作出规定后,就出现了确定某个对象是不是数组的经典问题.对于一个网页,或者一个全局作用域而言,使用instanceof操作符就能得到满意结果. if (value ...

  5. docker原理学习-环境搭建

    1. mac下用VMware虚拟机安装ubunt16.04 2. ubuntu安装并启动ssh服务 3. 用mac终端ssh到虚拟机中 ssh didiyu@ip 输入登陆密码

  6. linux系统登陆过程

    一.物理直连登陆过程 初始化进程init 会根据直接连接的字符终端设备,打开getty程序,并关联在字符终端设备上tty1/2/3/4/5/6/7....上,在不同的终端设备上提示用户输入信息,等待终 ...

  7. C. Magic Grid 构造矩阵

    C. Magic Grid time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  8. 第1节 storm编程:4、storm环境安装以及storm编程模型介绍

    dataSource:数据源,生产数据的东西 spout:接收数据源过来的数据,然后将数据往下游发送 bolt:数据的处理逻辑单元.可以有很多个,基本上每个bolt都处理一部分工作,然后将数据继续往下 ...

  9. 基于zedboard的DMA设计笔记

    2.BAR0空间的概念:BAR(Base Address Register ) 该组寄存器简称为BAR寄存器,BAR寄存器保存PCI设备使用的地址空间的基地址,该基地址保存的是该设备在PCI总线域中的 ...

  10. ActivePerl 安装

    下载 https://www.activestate.com/products/activeperl/downloads/ 链接:https://pan.baidu.com/s/1IXPdYFd5bD ...