HDU——Monkey and Banana 动态规划
Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input Specification
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output Specification
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height"
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
动态规划第一题!
本题一开始我都没看懂哪里该用动态规划。而且关于砖块这里的处理,我也很伤脑筋。
解题思路是这样的:
每一种砖块都当成三种(底面积分别是 长 宽,长 高,宽 高)。。存入结构体数组中
然后按底面积大小进行排序。
动规的过程是这样的:
循环 1 到 n*3个砖块
再嵌套一个循环 获取当前砖块下的,最大高度
加到砖块高度上
这样,遍历完成后,就会存贮了最大高度
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z,h;
}block[];
bool cmp2(int a,int b)
{
return a<b;
}
bool cmp(node a,node b)
{
return a.x*a.y<b.x*b.y;
}
int main()
{
int n;
int count=;
while (scanf("%d",&n)!=EOF&&n)
{
int a[];
int cur=;
for (int i=;i<n;i++)
{
scanf("%d %d %d",&a[],&a[],&a[]); //这里对长宽高也要排一下顺序,升序。
sort(a,a+,cmp2);
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
}
sort(block,block+cur,cmp);
block[].h=block[].z;
int max=;
for (int j=;j<cur;j++) //遍历所有的砖块
{
max=;
for (int k=;k<j;k++)
{
if (block[k].h>max&&block[k].x<block[j].x&&block[k].y<block[j].y)//寻找该砖块下的最大高度值
max=block[k].h; //max当中保存的即为前j-1个砖块的最大高度值。
}
block[j].h=block[j].z+max;//找到当前最高值,加入到当前砖块的h中。
}
max=;
for (int q=;q<cur;q++)
{
if (max<block[q].h) max=block[q].h;
}
count++;
printf("Case %d: maximum height = %d\n",count,max);
}
return ;
}
HDU——Monkey and Banana 动态规划的更多相关文章
- HDU 1069 Monkey and Banana(动态规划)
Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...
- Monkey and Banana(HDU 1069 动态规划)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
- HDU 1069 Monkey and Banana dp 题解
HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...
- HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 1069 Monkey and Banana (DP)
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- (最大上升子序列)Monkey and Banana -- hdu -- 1069
http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit:1000MS Memory L ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
随机推荐
- 十三: 悲观锁&乐观锁:解决丢失更新问题
悲观锁:认为丢失更新一定会出现,可以在查询的时候加入for update 认为丢失更新一定会出现,查询时: select * from account for update;for update : ...
- JVM性能调优指南
1.JVM的参数类型 1.1 标准参数:在各jdk版本中较稳定 -help -server -client -version -showversion -cp -classpath 1.2 X参数 1 ...
- spring切面编程
xml配置实现 先写三个类 public String amethod(String s) { System.out.println("This is AAAAAAAAAAAAAAAA&q ...
- CodeForces - 869B The Eternal Immortality
题意:已知a,b,求的最后一位. 分析: 1.若b-a>=5,则尾数一定为0,因为连续5个数的尾数要么同时包括一个5和一个偶数,要么包括一个0. 2.若b-a<5,直接暴力求即可. #in ...
- Kubernetes 各版本镜像列表
以下镜像列表由 kubeadm v1.11.1 导出,若使用预下载镜像离线部署的方式部署,请使用 kubeadm v1.11.1 版本 导出各版本镜像列表: kubeadm config images ...
- 微软重制Windows 1.0系统:祖师爷出山了
Windows官方推特在7月1日发布了一条很有趣的动态,“向大家介绍全新的Windows 1.0,带MS-DOS.时钟等”.配发的视频回顾了从Windows 1.0/3.1到Windows 10期间, ...
- Python测试进阶——(5)Python程序监控指定进程的CPU和内存利用率
用Python写了个简单的监控进程的脚本monitor190620.py,记录进程的CPU利用率和内存利用率到文件pid.csv中,分析进程运行数据用图表展示. 脚本的工作原理是这样的:脚本读取配置文 ...
- hue中访问impala报错
hue中访问impala报错:Could not connect to node03:21050 原因:impala服务未启动. 解决方法:在3个节点上都启动impala: 主节点node03启动以下 ...
- 010-PHP输出数组中第某个元素
<?php $monthName = array(1 => "January", "February", "March",//初 ...
- Java 布尔运算
章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...