HDU——Monkey and Banana 动态规划
Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input Specification
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output Specification
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height"
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
动态规划第一题!
本题一开始我都没看懂哪里该用动态规划。而且关于砖块这里的处理,我也很伤脑筋。
解题思路是这样的:
每一种砖块都当成三种(底面积分别是 长 宽,长 高,宽 高)。。存入结构体数组中
然后按底面积大小进行排序。
动规的过程是这样的:
循环 1 到 n*3个砖块
再嵌套一个循环 获取当前砖块下的,最大高度
加到砖块高度上
这样,遍历完成后,就会存贮了最大高度
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z,h;
}block[];
bool cmp2(int a,int b)
{
return a<b;
}
bool cmp(node a,node b)
{
return a.x*a.y<b.x*b.y;
}
int main()
{
int n;
int count=;
while (scanf("%d",&n)!=EOF&&n)
{
int a[];
int cur=;
for (int i=;i<n;i++)
{
scanf("%d %d %d",&a[],&a[],&a[]); //这里对长宽高也要排一下顺序,升序。
sort(a,a+,cmp2);
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
}
sort(block,block+cur,cmp);
block[].h=block[].z;
int max=;
for (int j=;j<cur;j++) //遍历所有的砖块
{
max=;
for (int k=;k<j;k++)
{
if (block[k].h>max&&block[k].x<block[j].x&&block[k].y<block[j].y)//寻找该砖块下的最大高度值
max=block[k].h; //max当中保存的即为前j-1个砖块的最大高度值。
}
block[j].h=block[j].z+max;//找到当前最高值,加入到当前砖块的h中。
}
max=;
for (int q=;q<cur;q++)
{
if (max<block[q].h) max=block[q].h;
}
count++;
printf("Case %d: maximum height = %d\n",count,max);
}
return ;
}
HDU——Monkey and Banana 动态规划的更多相关文章
- HDU 1069 Monkey and Banana(动态规划)
Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...
- Monkey and Banana(HDU 1069 动态规划)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
- HDU 1069 Monkey and Banana dp 题解
HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...
- HDU 1069 Monkey and Banana(二维偏序LIS的应用)
---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 1069 Monkey and Banana (DP)
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- (最大上升子序列)Monkey and Banana -- hdu -- 1069
http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit:1000MS Memory L ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
随机推荐
- oracle,mysql,SqlServer三种数据库的分页查询
MySql: MySQL数据库实现分页比较简单,提供了 LIMIT函数.一般只需要直接写到sql语句后面就行了.LIMIT子 句可以用来限制由SELECT语句返回过来的数据数量,它有一个或两个参数,如 ...
- C# 创建Windows Service(Windows服务)程序
本文介绍了如何用C#创建.安装.启动.监控.卸载简单的Windows Service 的内容步骤和注意事项. 一.创建一个Windows Service 1)创建Windows Service项目 2 ...
- leetcode844 Backspace String Compare
""" Given two strings S and T, return if they are equal when both are typed into empt ...
- LoadRunner监控Linux系统
需要下载3个包: 地址链接:链接:https://pan.baidu.com/s/1lltAa6JnjJ7Mr88duixUSQ 密码:5yiw(1)rsh-0.17-14.i386.rpm (2) ...
- SciPy 常量
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- ubi问题总结
一.挂载成功后,使用正常.有时会出现:UBIFS error (pid 76): ubifs_read_node: bad node type (255 but expected 1)UBIFS er ...
- CodeForces - 869C The Intriguing Obsession(组合数)
题意:有三个集合,分别含有a.b.c个点,要求给这些点连线,也可以全都不连,每两点距离为1,在同一集合的两点最短距离至少为3的条件下,问有多少种连接方案. 分析: 1.先研究两个集合,若每两个集合都保 ...
- mysql提示 Lock wait timeout exceeded解决办法 事务锁死
查询 select concat('KILL ',id,';') from information_schema.processlist; 复制结果 新建sql脚本粘贴并执行
- mysql limit查询入门
- yolov3输出检测图片位置信息
前言 我们在进行图片识别后需要进行进一步的处理,该文章会介绍:1.怎样取消lables;2.输出并保存(.txt)标记框的位置信息 一.去掉label 在darknet/src/image.c 收索d ...