一、高斯混合模型概述

1、公式

高斯混合模型是指具有如下形式的概率分布模型:

其中,αk≥0,且∑αk=1,是每一个高斯分布的权重。Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为θk=(μk, αk2),概率密度的表达式为:

高斯混合模型就是K个高斯分布的线性组合,它假设所有的样本可以分为K类,每一类的样本服从一个高斯分布,那么高斯混合模型的学习过程就是去估计K个高斯分布的概率密度Ø(y|θk),以及每个高斯分布的权重αk。每个观测样本出现的概率就表示为K个高斯分布概率的加权。

所谓聚类,就是对于某个样本yj,把该样本代入到K个高斯分布中求出属于每个类别的概率:

然后选择概率值最高的那个类别作为它最终的归属。把所有的样本分别归入K个类,也就完成了聚类的过程。

2、案例

假设有 20 个身高样本数据,并不知道每个样本数据是来自男生还是女生。在这种情况下,如何将这 20 个身高数据聚成男女生两大类呢?

用高斯混合模型来聚类,那么假设男女生身高分别服从两个不同的高斯分布,高斯混合模型就是由男生身高和女生身高这两个高斯分布混合而成。在高斯混合模型中,样本点属于某一类的概率不是非0即 1 的,而是属于不同类有不同的概率值。如下图,有两个高斯分布,均值分别为μ1和μ2,而高斯混合模型就是又这两个高斯分布的概率密度线性组合而成。

二、高斯混合模型参数估计的EM算法

假设观测数据y1, y2, ...yN由高斯混合模型生成:

其中,要估计的参数θ=(α1, α2, ...αK; θ1, θ2, ..., θK),θk=(μk, αk2),k=1,2,...,K。因此如果高斯混合模型由K个高斯分布混合而成,那么就有3K个参数需要估计。

我们用极大似然估计法来估计参数θ,也就是求参数θ,使得观测数据y的对数似然函数L(θ)=logP(y|θ)的极大化:

由于对数似然函数L(θ)中包含了和的对数,比较难以求解,因此考虑用EM算法。

(一)高斯混合模型EM算法的推导

用EM算法估计高斯混合模型的参数θ,步骤如下:

1、明确隐变量,写出完全数据的对数似然函数

可以设想观测数据yj,j=1,2,..., N,是这样产生的:

首先依概率αk选择第k个高斯分布分模型Ø(y|θk),然后依这个分模型的概率分布Ø(y|θk)生成观测数据yj,N个观测数据中有多个来自于同一个分模型。

这时观测数据yj,j=1,2,..., N是已知的,而反映观测数据yj来自于第k个分模型的数据是未知的,也就是隐变量,用γjk表示:

有了观测数据yj和未观测数据γjk,那么完全数据是:

在《概率图模型之EM算法》中,我们说了,EM算法的目标是通过迭代,求不完全数据的对数似然函数L(θ)=logP(y|θ)的极大似然估计,这可以转化为求完全数据的对数似然函数logP(y, γ|θ)的期望的极大似然估计。

于是我们先得到完全数据的似然函数:

其中nk表示N个观测数据中,由第k个分模型生成的数据的个数。

那么完全数据的对数似然函数为:

2、EM算法的E步:确定Q函数

Q函数是指,在给定观测数据y和第i轮迭代的参数θ(i)时,完全数据的对数似然函数logP(y, γ|θ)的期望,计算期望的概率是隐随机变量γ的条件概率分布P(γ|y, θ(i))。于是Q函数为:

其中隐随机变量γ的条件概率分布P(γ|y, θ(i))为:

这里需要计算E(γjk|y, θ(i)):

是当前模型参数θ(i)下第j个观测数据来自第k个分模型的概率,称为分模型k对观测数据yj的响应度。

3、确定EM算法的M步:

M步也就是在得到第i轮的参数θ(i)之后,求下一轮迭代的参数θ(i+1),使函数Q(θ,θ(i))极大:

得到参数θ(i+1)之后,继续进行迭代求新的参数,直到Q函数的值不再有明显变化为止。

(二)高斯混合模型EM算法总结

输入:观测数据y1,y2,...,yN,和高斯混合模型:

输出:高斯混合模型的参数θ=(α1, α2, ...αK; θ1, θ2, ..., θK),θk=(μk, αk2),k=1,2,...,K。

步骤:

1、取参数的初始值开始迭代;

2、E步:在第i轮迭代过后,根据当前的模型参数θ(i),求高斯分布分模型Ø(y|θk)对观测数据yj的响应度:

3、M步:计算新一轮迭代的模型参数:

4、重复第2步和第3步,直到收敛而停止迭代。停止迭代的条件是,对于较小的正数ε1、ε2,有:

参考资料:

李航:《统计学习方法》

聚类之高斯混合模型与EM算法的更多相关文章

  1. 高斯混合模型的EM算法

    高斯混合模型的EM算法 混合高斯模型 高斯混合模型的概率分布可以写成多个高斯分布的线形叠加,即 \[ p(\mathbf x) = \sum_{k=1}^{K}\pi_k\mathcal N(\mat ...

  2. SIGAI机器学习第二十三集 高斯混合模型与EM算法

    讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期 ...

  3. 高斯混合模型与EM算法

    对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i ...

  4. 机器学习 : 高斯混合模型及EM算法

    Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为 ...

  5. 机器学习之高斯混合模型及EM算法

    第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...

  6. 机器学习基础知识笔记(一)-- 极大似然估计、高斯混合模型与EM算法

    似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p( ...

  7. 高斯混合和EM算法

    首先介绍高斯混合模型: 高斯混合模型是指具有以下形式的概率分布模型: 一般其他分布的混合模型用相应的概率密度代替(1)式中的高斯分布密度即可. 给定训练集,我们希望构建该数据联合分布 这里,其中是概率 ...

  8. 聚类之高斯混合模型(Gaussian Mixture Model)【转】

    k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...

  9. 混合高斯模型和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

随机推荐

  1. mysql 命令行个性化设置

    通过配置显示主机和用户名 mysql -u root -p --prompt="(\u@\h) [\d]>" 或在配置文件中修改,可在命令行中的目标位置查看 --tee na ...

  2. SpringMVC 自定义类型转换

    类型转换可以将请求参数转换为指定的类型.指定的格式(数据的格式化),然后传给业务方法的参数. Spring MVC内置了常用的类型转换器.如果内置的类型转换器满足不了需求,可以使用自定义的类型转换. ...

  3. 「SDOI2013」森林

    「SDOI2013」森林 传送门 树上主席树 + 启发式合并 锻炼码力,没什么好说的. 细节见代码. 参考代码: #include <algorithm> #include <cst ...

  4. Java连载80-数字类格式、随机数、BigDecimal

    一.数字类 1.关于数字格式化:java.text.DecimalFormat; 2.数字格式元素: # 任意数字 , 千分位 . 小数点 0 不够补零 package com.bjpowernode ...

  5. 神奇的navigationBar.translucent

    初步实践所得: 当translucent属性为YES的时候,vc的view的坐标从导航栏的左上角开始: 当translucent属性为NO的时候,vc的view的坐标从导航栏的左下角开始:   深入探 ...

  6. LeetCode中等题(一)

    题目一: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表来表 ...

  7. 伪类:after,:before的用法

    :after和:before是css3中的伪类元素.用法是像元素的前或者后插入元素.以after为例: li:after{ content: ''; color: #ff0000; } 意思是向li元 ...

  8. FTPClient下载文件,程序假死问题

    [所属类包] org.apache.commons.net.ftp.FTPClient [现象描述] 这两天java项目中用到了FTP下载,像之前的项目写好代码,但是点击下载后,程序调试到下面这一行, ...

  9. NO21 Llinux的文件种类与扩展名--文件权限--软硬链接--Linux删除文件原理

    Linux的文件种类与扩展名 一.文件种类:1.普通文件(regular file)第一个字符为[ - ]包括:①纯文本档(ASCII):这是Linux系统中最多的一种文件类型,称为纯文本档.是因为内 ...

  10. PYTHON __main__

    #importby.py if __name__ =='__main__': print '>>>>>>>1' if __name__ =="imp ...