逻辑回归和sigmoid函数分类
逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现
sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变。
logistic 回归分类器:在每个特征上乘以一个回归系数,然后将所有的结果值相加,将这个总和代入到sigmoid函数中,得到一个在0-1之间的数值,大于0.5分为1类,小于0.5分为0类。所以,逻辑回归也可以被看作是一种概率估计。
关键在于求最佳回归系数。
1、基于最优化方法的最佳回归系数确定
1)梯度上升算法:沿着该函数的梯度方向搜寻,该算法在到达每个点后都会重新估计移动的方向,循环迭代直到满足停止条件。
梯度下降算法:求解函数最小值。
#逻辑回归梯度上升优化算法
def loadDataSet():
dataMat = [];labelMat = []
fr = open('testset.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn,classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights =ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix * weights)
error = (labelMat -h)
weights = weights +alpha * dataMatrix.transpose() *error
return weights
alpha是向目标移动的步长,maxCycles是迭代次数。
2、分析数据:画出决策边界
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
fig =plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = arange(-3.0,3.0,0.1)
y = arange(-weights[0] -weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show
逻辑回归和sigmoid函数分类的更多相关文章
- 大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲 ...
- Logstic回归采用sigmoid函数的原因
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: 、决策边界、逻辑回归代价函数、多分类与(逻辑回归和线性回归的)正则化
Classification It's not a good idea to use linear regression for classification problem. We can use ...
- [机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew N ...
- 通俗地说逻辑回归【Logistic regression】算法(一)
在说逻辑回归前,还是得提一提他的兄弟,线性回归.在某些地方,逻辑回归算法和线性回归算法是类似的.但它和线性回归最大的不同在于,逻辑回归是作用是分类的. 还记得之前说的吗,线性回归其实就是求出一条拟合空 ...
- stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...
- CS229笔记:分类与逻辑回归
逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一 ...
随机推荐
- Random Forest And Extra Trees
随机森林 我们对使用决策树随机取样的集成学习有个形象的名字–随机森林. scikit-learn 中封装的随机森林,在决策树的节点划分上,在随机的特征子集上寻找最优划分特征. import numpy ...
- 让百度和google收录我们的网站
花了几天时间终于把这个看似高大上的博客搞好了,但是发现只能通过在地址栏输入地址进行访问,这很明显和我装X装到底的性格,于是乎在查阅了嘟爷的博客,和我各种百度终于搞出来了. 让谷歌收录 让谷歌收录还是比 ...
- 能源科技,苹果和Google的新圣战?
细心的果粉可能会注意到,最新版本的IOS软体中,增加了一个不起眼的按钮,它是一款署名为"家庭"的App,之所以说它不起眼,是因为它好像真得没什么用,活跃率恐怕不及Wechat的万分 ...
- Scheme实现数字电路仿真(3)——模块
版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/12242650.html 作者:窗户 ...
- FPGA小白学习之路(1) System Verilog的概念以及与verilog的对比(转)
转自CSDN:http://blog.csdn.net/gtatcs/article/details/8970489 SystemVerilog语言简介 SystemVerilog是一种硬件描述和验证 ...
- 完整版EXCEL导出 (大框架SpringCloud 业务还是Springboot一套)
这里用的是easypoi 首先引入jar包 <!-- excel --><dependency> <groupId>cn.afterturn</groupId ...
- MySQL集群MGR架构for单主模式
本文转载自: https://www.93bok.com MGR简介 MySQL Group Replication(简称MGR)是MySQL官方于2016年12月推出的一个全新的高可用与高扩展的解决 ...
- d3.js ---画坐标轴
画坐标轴 //使用d3的svg的axis()方法生成坐标轴 var x_axis = d3.svg.axis().scale(scale_x), y_axis = d3.svg.axis().scal ...
- h5单页面布局
前段时间做了一个PC端单页面应用 GitHub因为项目开始的比较仓促,加上本人前端经验特别少,虽然项目大体完成了,但是页面布局确成立它的硬伤...为了填补心里落差,专门做了一个h5的单页面布局,代码很 ...
- Linq的整型或实体类null引发的报错问题
经常在程序中遇到两个空值报错问题: 问题1:int类型如果为不可空,假如传进去null,会报错 问题2:EF的获得单个实体的Model如果为空,那么后面如果跟上属性会报错 解决问题1: 一般属性都设为 ...