Link Analysis_1_Basic Elements
1. Edge Attributes
1.1 Methods of category
1.1.1 Basic three categories in terms of number of layers as edges or direction of edges:
import networkx as nx
G = nx.DiGraph() # 1.directed
G = nx.Graph() # 2.undirected
G = nx.MultiGraph() # 3.between two nodes many layers of relationships
1.1.2 Logical categories in terms of cluster characteristics, i.e., Bipartite:
from networkx.algorithms import bipartite
B = nx.Graph() # create an empty network first step, no subsets of nodes
B.add_nodes_from(['H', 'I', 'J', 'K', 'L'], bipartite = 0) # label 1 group
B.add_nodes_from([7, 8, 9, 10], bipartite = 1) # label 2
# add a list of edges at one time
B.add_edges_from([('H', 7), ('I', 7), ('J', 9),('K', 8), ('K', 10), ('L', 10)])
# Chect if bipartite or not
bipartite.is_bipartite(B)
Bipartite graph cannot contain a cycle of an odd number of nodes.
1.2 Edge can contain detailed features:
G.add_edge('A', 'B', weight = 6, relation = 'family', sign = '+')
G.remove_edge('A', 'B') # remove edge
1.3 Access edges:
G.edges() # list of all edges
G.edges(data = True) # list of all with attributes
G.edges(data = 'relation') # list with certain attribute
2. Node Attributes
2.1 Node be named as character.
G.add_node('A', name = 'Sophie')
G.add_node('B', name = 'Cumberbatch')
G.add_node('C', name = 'Miko') # pet dog
2.2 Access nodes:
G.node['A']['name']
3. Network Connectivity
3.1 Triadic Closure: Tendency for people who have shared connections to become connects, i.e., to cluster.
3.1.1 Local Clustering Coefficient
# local clustering only for multigraph type
G = nx.Graph()
G.add_edges_from([('A', 'K'),
('A', 'B'),
('A', 'C'),
('B', 'C'),
('B', 'K'),
('C', 'E'),
('C', 'F'),
('D', 'E'),
('E', 'F'),
('E', 'H'),
('F', 'G'),
('I', 'J')])
nx.clustering(G, 'A')
0.6666666666666666
Solve: 2 / [2 × 3 ÷ 2] # actual pairs / (C32)
3.1.2 Global Clustering Coefficient
# Method 1: Take average of all local clustering coefficients.
nx.average_clustering(G)
0.28787878787878785
# Method 2: Percent of open triads that are triangles in the network
# Triange: 3 nodes connected by 3 edges
# open triads: 3 nodes connected by 2 edges
# Transitivity = (3 * number of closed triads) / number of open triads
nx.transitivity(G)
0.4090909090909091
Method 2 put a larger weight on high degree nodes.
3.2 Distances
3.2.1 Singe Pair Pattern:
Find path and length of the shortest path between two nodes.
nx.shortest_path(G, 'A', 'H')
['A', 'C', 'E', 'H']
nx.shortest_path_length(G, 'A', 'H')
3
3.2.2 One Node to Every Others Pattern:
Breadth-first Search: discover nodes in layers step by step.
T = nx.bfs_tree(G, 'A')
T.edges() # to get the tree
OutEdgeView([('A', 'K'), ('A', 'B'), ('A', 'C'), ('C', 'E'), ('C', 'F'), ('E', 'D'), ('E', 'H'), ('F', 'G')])
nx.shortest_path_length(G, 'A') # get dictionary of distances from A to others
{'A': 0, 'K': 1, 'B': 1, 'C': 1, 'E': 2, 'F': 2, 'D': 3, 'H': 3, 'G': 3}
3.2.3 Measures of Distance Patterns
# Average of all
nx.average_shortest_path_length(G)
# Maximum distance
nx.diameter(G)
Eccentricity of a node is the largest distance between A and all others.
Radius is the minimum eccentricity.
Periphery is the set of nodes that have eccentricity equal to the diameter.
Center is the set of nodes with eccentricity equal to radius.
nx.eccentricity(G)
nx.radius(G)
nx.periphery(G)
nx.center(G)
3.2.4 Application
import numpy as np
import pandas as pd
%matplotlib notebook
# Instantiate the graph
G = nx.karate_club_graph()
nx.draw_networkx(G)

4. Connectivity
4.1 Connectivity in Undirected Graphs
# find number of communities (connected componets)
nx.number_connected_componets(G)
# give list of them
sorted(nx.connected_components(G))
# find the community to which 'M' belongs
nx.node_connected_components(G, 'M')
4.2 Connectivity in Directed Graphs
# find strongly connected component (directed path to every other nodes &
# no other node has directed path to this subset)
sorted(nx_strongly_connected_components(G))
5. Network Robustness
5.1 Definition: the ability for network to maintain general structural properties (connectivity) when faced with attacks (removal of edges or nodes).
# smallest number of nodes needed to disconnect
nx.node_connectivity(G_un)
# which nodes
nx.minimum_code_cut(G_un)
# smallest number of edges needed to disconnect
nx.edge_connectivity(G_un)
# which edges
nx.minimum_edge_cut(G_un)
5.2 Node Connectivity
# ways to deliver msg from 'G' to 'L'
sorted(nx.all_simple_paths(G, 'G', 'L'))
# want to block this path, how many nodes neeed to remove
nx.node_connectivity(G, 'G', 'L')
# which nodes
nx.minimum_node_cut(G, 'G', 'L')
5.3 Edge Connectivity
# how many
nx.edge_connectivity(G, 'G', 'L')
# show in details
nx.minimum_edge_cut(G, 'G', 'L')
6. Centrality
6.1 Degree Centrality
6.1.1 Undirected Network
G = nx.karate_club_graph()
G = nx.convert_node_labels_to_integers(G, first_label = 1)
degCent = nx.degree_centrality(G)
degCent[34]
0.5151515151515151
6.1.2 Directed Network
indegCent = nx.in_degree_centrality(G)
indegCent = nx.out_degree_centrality(G)
6.2 Closeness Centrality
6.2.1 Calculation: Shorter distance away from all other nodes.
closeCent = nx.closeness_centrality(G)
closeCent[34]
0.55
sum(nx.shortest_path_length(G, 34).values())
60
# Essence is equivalent to process below
(len(G.nodes()) - 1)/61
0.5409836065573771
6.2.2 Disconnceted Nodes Measurement
Method One
# choose non-normalizing, closeness centrality would be one
nx.closeness_centrality(G, normalized = False)
1
Method Two
# choose normalising,i.e. divide by (total nodes - 1)
nx.closeness_centrality(G, normalized = True)
0.071
6.3 Betweenness Centrality (computationally expensive)
Essence: Find nodes which shows up in many shortest paths between two nodes.
6.3.1 Method One: Use all 34 nodes in karate club
btwnCent = nx.betweenness_centrality(G,normalized = True, endpoints = False)
import operator
sorted(btwnCent.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.43763528138528146),
(34, 0.30407497594997596),
(33, 0.145247113997114),
(3, 0.14365680615680618),
(32, 0.13827561327561325)]
6.3.2 Method Two: Use 10 nodes as approximation
btwnCent_approx = nx.betweenness_centrality(G,normalized = True, endpoints = False, k = 10)
sorted(btwnCent_approx.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.3674031986531986),
(34, 0.3048388648388649),
(32, 0.17290028258778256),
(3, 0.13572044853294854),
(33, 0.130249518999519)]
6.3.3 Method Three: Specify subsets
btwnCent_subset = nx.betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.04899515993265994),
(34, 0.028807419432419434),
(3, 0.018368205868205867),
(33, 0.01664712602212602),
(9, 0.014519450456950456)]
6.3.4 Method Four: Edges
btwnCent_edge = nx.edge_betweenness_centrality(G, normalized = True)
sorted(btwnCent_edge.items(), key = operator.itemgetter(1), reverse = True)[0:5]
# node 1 is the instructor of club
[((1, 32), 0.1272599949070537),
((1, 7), 0.07813428401663695),
((1, 6), 0.07813428401663694),
((1, 3), 0.0777876807288572),
((1, 9), 0.07423959482783014)]
btwnCent_edge_subset = nx.edge_betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_edge_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[((1, 9), 0.01366536513595337),
((1, 32), 0.01366536513595337),
((14, 34), 0.012207509266332794),
((1, 3), 0.01211343123107829),
((1, 6), 0.012032085561497326)]
Link Analysis_1_Basic Elements的更多相关文章
- [.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类
[.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类 本节导读:本节主要介绍通过序列 ...
- [.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用
[.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用 本节导读:讨论了表达式树的定义和解析之后,我们知道了表达式树就是并非可执行代码,而是将表达式对象化后的数据结构.是 ...
- Skip list--reference wiki
In computer science, a skip list is a data structure that allows fast search within an ordered seque ...
- 基于jsoup的Java服务端http(s)代理程序-代理服务器Demo
亲爱的开发者朋友们,知道百度网址翻译么?他们为何能够翻译源网页呢,iframe可是不能跨域操作的哦,那么可以用代理实现.直接上代码: 本Demo基于MVC写的,灰常简单,copy过去,简单改改就可以用 ...
- Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第6节: 异线程回收对象
Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第六节: 异线程回收对象 异线程回收对象, 就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑 我 ...
- fullpage.js 具体使用方法
1.fullpage.js 下载地址 https://github.com/alvarotrigo/fullPage.js 2.fullPage.js 是一个基于 jQuery 的插件,它能够很方便 ...
- guestfs-python 手册
Help on module guestfs: NAME guestfs - Python bindings for libguestfs FILE /usr/lib64/python2.7/site ...
- Java爬取网易云音乐民谣并导入Excel分析
前言 考虑到这里有很多人没有接触过Java网络爬虫,所以我会从很基础的Jsoup分析HttpClient获取的网页讲起.了解这些东西可以直接看后面的"正式进入案例",跳过前面这些基 ...
- 由Reference展开的学习
在阅读Thinking in Java的Containers in depth一章中的Holding references时,提到了一个工具包java.lang.ref,说这是个为Java垃圾回收提供 ...
随机推荐
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 创建数组
import numpy as np x = np.empty([3,2], dtype = int) print (x) import numpy as np # 默认为浮点数 x = np.zer ...
- css属性书写顺序(重点)
- Nexus-vPC和STP BPDU
1.为了交互vPC拓扑,STP机制被修改适应到vPC peer环境.2.对于vPC ports,只有主角色运行STP,换句话说,vPC下的STP由主角色设备控制.3.只有主角色设备在DP(指定端口)上 ...
- 转专业后补修C语言的一些体会(3)
1.指针:指针是C语言最为强大的工具之一,有着很多优点,比如可以改善子程序的效率,为动态数据结构提供支持,为C的动态内存分配系统提供支持,为函数提供修改变量值的手段.但指针的使用十分困难.会出现很多意 ...
- 打开终端,提示 “无法加载文件C:\XXX\WindowsPowerShell\profile.ps1,因为在此系统上禁止运行脚本” 的错误
解决步骤: 1. 以管理员身份运行PowerShell 2. 执行:get-ExecutionPolicy,回复Restricted,表示状态是禁止的 3.执行:set-ExecutionPolicy ...
- 阿里云服务器安装nginx(ubantu16.04)
下载安装包 sudo wget http://nginx.org/download/nginx-1.15.5.tar.gz 解压缩 tar zxvf nginx-1.15.5.tar.gz 打开目录 ...
- GlusterFS分布式文件系统概述
一.GlusterFS概述 GlusterFS是一个开源的分布式文件系统,同时也是Scale-Out存储解决方案Gluster的核心,在存储数据方面有强大的横向扩展能力,通过扩展不同的节点可以支持PB ...
- 文本输入框UITextField和UITextView
本文概要 1.简介 2.介绍TextField控件 3.介绍TextView控件 4.键盘的打开和关闭 5.关闭和大开键盘的通知 6.键盘的种类 详情 1.简介 与Label一样,TextField和 ...
- MyBatis+Oracle实现主键自增长的几种常用方式
一.使用selectKey标签 <insert id="addLoginLog" parameterType="map" > <selectK ...
- css height VS min-height
height:容器高度固定(值是百分比时除外): min-height:容器高度小于该值时取该值,大于该值时按实际的值.应用:页面中页脚置底.