Link Analysis_1_Basic Elements
1. Edge Attributes
1.1 Methods of category
1.1.1 Basic three categories in terms of number of layers as edges or direction of edges:
import networkx as nx
G = nx.DiGraph() # 1.directed
G = nx.Graph() # 2.undirected
G = nx.MultiGraph() # 3.between two nodes many layers of relationships
1.1.2 Logical categories in terms of cluster characteristics, i.e., Bipartite:
from networkx.algorithms import bipartite
B = nx.Graph() # create an empty network first step, no subsets of nodes
B.add_nodes_from(['H', 'I', 'J', 'K', 'L'], bipartite = 0) # label 1 group
B.add_nodes_from([7, 8, 9, 10], bipartite = 1) # label 2
# add a list of edges at one time
B.add_edges_from([('H', 7), ('I', 7), ('J', 9),('K', 8), ('K', 10), ('L', 10)])
# Chect if bipartite or not
bipartite.is_bipartite(B)
Bipartite graph cannot contain a cycle of an odd number of nodes.
1.2 Edge can contain detailed features:
G.add_edge('A', 'B', weight = 6, relation = 'family', sign = '+')
G.remove_edge('A', 'B') # remove edge
1.3 Access edges:
G.edges() # list of all edges
G.edges(data = True) # list of all with attributes
G.edges(data = 'relation') # list with certain attribute
2. Node Attributes
2.1 Node be named as character.
G.add_node('A', name = 'Sophie')
G.add_node('B', name = 'Cumberbatch')
G.add_node('C', name = 'Miko') # pet dog
2.2 Access nodes:
G.node['A']['name']
3. Network Connectivity
3.1 Triadic Closure: Tendency for people who have shared connections to become connects, i.e., to cluster.
3.1.1 Local Clustering Coefficient
# local clustering only for multigraph type
G = nx.Graph()
G.add_edges_from([('A', 'K'),
('A', 'B'),
('A', 'C'),
('B', 'C'),
('B', 'K'),
('C', 'E'),
('C', 'F'),
('D', 'E'),
('E', 'F'),
('E', 'H'),
('F', 'G'),
('I', 'J')])
nx.clustering(G, 'A')
0.6666666666666666
Solve: 2 / [2 × 3 ÷ 2] # actual pairs / (C32)
3.1.2 Global Clustering Coefficient
# Method 1: Take average of all local clustering coefficients.
nx.average_clustering(G)
0.28787878787878785
# Method 2: Percent of open triads that are triangles in the network
# Triange: 3 nodes connected by 3 edges
# open triads: 3 nodes connected by 2 edges
# Transitivity = (3 * number of closed triads) / number of open triads
nx.transitivity(G)
0.4090909090909091
Method 2 put a larger weight on high degree nodes.
3.2 Distances
3.2.1 Singe Pair Pattern:
Find path and length of the shortest path between two nodes.
nx.shortest_path(G, 'A', 'H')
['A', 'C', 'E', 'H']
nx.shortest_path_length(G, 'A', 'H')
3
3.2.2 One Node to Every Others Pattern:
Breadth-first Search: discover nodes in layers step by step.
T = nx.bfs_tree(G, 'A')
T.edges() # to get the tree
OutEdgeView([('A', 'K'), ('A', 'B'), ('A', 'C'), ('C', 'E'), ('C', 'F'), ('E', 'D'), ('E', 'H'), ('F', 'G')])
nx.shortest_path_length(G, 'A') # get dictionary of distances from A to others
{'A': 0, 'K': 1, 'B': 1, 'C': 1, 'E': 2, 'F': 2, 'D': 3, 'H': 3, 'G': 3}
3.2.3 Measures of Distance Patterns
# Average of all
nx.average_shortest_path_length(G)
# Maximum distance
nx.diameter(G)
Eccentricity of a node is the largest distance between A and all others.
Radius is the minimum eccentricity.
Periphery is the set of nodes that have eccentricity equal to the diameter.
Center is the set of nodes with eccentricity equal to radius.
nx.eccentricity(G)
nx.radius(G)
nx.periphery(G)
nx.center(G)
3.2.4 Application
import numpy as np
import pandas as pd
%matplotlib notebook
# Instantiate the graph
G = nx.karate_club_graph()
nx.draw_networkx(G)

4. Connectivity
4.1 Connectivity in Undirected Graphs
# find number of communities (connected componets)
nx.number_connected_componets(G)
# give list of them
sorted(nx.connected_components(G))
# find the community to which 'M' belongs
nx.node_connected_components(G, 'M')
4.2 Connectivity in Directed Graphs
# find strongly connected component (directed path to every other nodes &
# no other node has directed path to this subset)
sorted(nx_strongly_connected_components(G))
5. Network Robustness
5.1 Definition: the ability for network to maintain general structural properties (connectivity) when faced with attacks (removal of edges or nodes).
# smallest number of nodes needed to disconnect
nx.node_connectivity(G_un)
# which nodes
nx.minimum_code_cut(G_un)
# smallest number of edges needed to disconnect
nx.edge_connectivity(G_un)
# which edges
nx.minimum_edge_cut(G_un)
5.2 Node Connectivity
# ways to deliver msg from 'G' to 'L'
sorted(nx.all_simple_paths(G, 'G', 'L'))
# want to block this path, how many nodes neeed to remove
nx.node_connectivity(G, 'G', 'L')
# which nodes
nx.minimum_node_cut(G, 'G', 'L')
5.3 Edge Connectivity
# how many
nx.edge_connectivity(G, 'G', 'L')
# show in details
nx.minimum_edge_cut(G, 'G', 'L')
6. Centrality
6.1 Degree Centrality
6.1.1 Undirected Network
G = nx.karate_club_graph()
G = nx.convert_node_labels_to_integers(G, first_label = 1)
degCent = nx.degree_centrality(G)
degCent[34]
0.5151515151515151
6.1.2 Directed Network
indegCent = nx.in_degree_centrality(G)
indegCent = nx.out_degree_centrality(G)
6.2 Closeness Centrality
6.2.1 Calculation: Shorter distance away from all other nodes.
closeCent = nx.closeness_centrality(G)
closeCent[34]
0.55
sum(nx.shortest_path_length(G, 34).values())
60
# Essence is equivalent to process below
(len(G.nodes()) - 1)/61
0.5409836065573771
6.2.2 Disconnceted Nodes Measurement
Method One
# choose non-normalizing, closeness centrality would be one
nx.closeness_centrality(G, normalized = False)
1
Method Two
# choose normalising,i.e. divide by (total nodes - 1)
nx.closeness_centrality(G, normalized = True)
0.071
6.3 Betweenness Centrality (computationally expensive)
Essence: Find nodes which shows up in many shortest paths between two nodes.
6.3.1 Method One: Use all 34 nodes in karate club
btwnCent = nx.betweenness_centrality(G,normalized = True, endpoints = False)
import operator
sorted(btwnCent.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.43763528138528146),
(34, 0.30407497594997596),
(33, 0.145247113997114),
(3, 0.14365680615680618),
(32, 0.13827561327561325)]
6.3.2 Method Two: Use 10 nodes as approximation
btwnCent_approx = nx.betweenness_centrality(G,normalized = True, endpoints = False, k = 10)
sorted(btwnCent_approx.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.3674031986531986),
(34, 0.3048388648388649),
(32, 0.17290028258778256),
(3, 0.13572044853294854),
(33, 0.130249518999519)]
6.3.3 Method Three: Specify subsets
btwnCent_subset = nx.betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.04899515993265994),
(34, 0.028807419432419434),
(3, 0.018368205868205867),
(33, 0.01664712602212602),
(9, 0.014519450456950456)]
6.3.4 Method Four: Edges
btwnCent_edge = nx.edge_betweenness_centrality(G, normalized = True)
sorted(btwnCent_edge.items(), key = operator.itemgetter(1), reverse = True)[0:5]
# node 1 is the instructor of club
[((1, 32), 0.1272599949070537),
((1, 7), 0.07813428401663695),
((1, 6), 0.07813428401663694),
((1, 3), 0.0777876807288572),
((1, 9), 0.07423959482783014)]
btwnCent_edge_subset = nx.edge_betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_edge_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[((1, 9), 0.01366536513595337),
((1, 32), 0.01366536513595337),
((14, 34), 0.012207509266332794),
((1, 3), 0.01211343123107829),
((1, 6), 0.012032085561497326)]
Link Analysis_1_Basic Elements的更多相关文章
- [.net 面向对象程序设计进阶] (11)  序列化(Serialization)(三)  通过接口 IXmlSerializable 实现XML序列化 及 通用XML类
		
[.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类 本节导读:本节主要介绍通过序列 ...
 - [.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用
		
[.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用 本节导读:讨论了表达式树的定义和解析之后,我们知道了表达式树就是并非可执行代码,而是将表达式对象化后的数据结构.是 ...
 - Skip list--reference wiki
		
In computer science, a skip list is a data structure that allows fast search within an ordered seque ...
 - 基于jsoup的Java服务端http(s)代理程序-代理服务器Demo
		
亲爱的开发者朋友们,知道百度网址翻译么?他们为何能够翻译源网页呢,iframe可是不能跨域操作的哦,那么可以用代理实现.直接上代码: 本Demo基于MVC写的,灰常简单,copy过去,简单改改就可以用 ...
 - Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第6节: 异线程回收对象
		
Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第六节: 异线程回收对象 异线程回收对象, 就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑 我 ...
 - fullpage.js 具体使用方法
		
1.fullpage.js 下载地址 https://github.com/alvarotrigo/fullPage.js 2.fullPage.js 是一个基于 jQuery 的插件,它能够很方便 ...
 - guestfs-python 手册
		
Help on module guestfs: NAME guestfs - Python bindings for libguestfs FILE /usr/lib64/python2.7/site ...
 - Java爬取网易云音乐民谣并导入Excel分析
		
前言 考虑到这里有很多人没有接触过Java网络爬虫,所以我会从很基础的Jsoup分析HttpClient获取的网页讲起.了解这些东西可以直接看后面的"正式进入案例",跳过前面这些基 ...
 - 由Reference展开的学习
		
在阅读Thinking in Java的Containers in depth一章中的Holding references时,提到了一个工具包java.lang.ref,说这是个为Java垃圾回收提供 ...
 
随机推荐
- PyQt5剪切板操作
			
1.使用剪切板import sys,mathfrom PyQt5.QtWidgets import *from PyQt5.QtGui import *from PyQt5.QtCore import ...
 - spring boot jpa 复杂查询 动态查询 连接and和or 模糊查询 分页查询
			
最近项目中用到了jpa,刚接触的时候有些激动,以前的到层忽然不用写sql不用去自己实现了,只是取个方法名就实现了,太惊艳了,惊为天人,但是慢慢的就发现不是这么回事了,在动态查询的时候,不知道怎么操作了 ...
 - SprintBoot学习(二)
			
Spring Boot的入口类 1.名为xxxApplication的就是入口类,在main方法中使用SpringApplication.run(SpringBootTestApplication.c ...
 - location练习!(重点)
			
写location最重要的就是hosts文件,添加一次域名跳转就得添加一条hosts文件 hosts文件: 192.168.200.120 www.a.com 192.168.200.119 www. ...
 - ajax的XmlHttpRequest对象常用方法
			
onreadystatechange用于检测readyState状态的改变,当readyState的状态发生改变的时候调用回调
 - echarts做飞线图
			
先上图,要不感觉没有说服力: 飞线图应该是大屏中很常见的一种了,通常你可以很轻易的用datav做一个飞线图,而且datav做的大屏逼格真的很高,本身也是开源免费的项目,开箱即用,上手简单……行了回归正 ...
 - centos7使用docker制作tomcat本地镜像
			
1.安装Docker 安装docker前请确认当前linux的内核版必须是3.10及以上 命令: uname -r 1).yum install -y yum-utils device-mapper ...
 - The Last Puzzle ZOJ - 3541
			
题目链接 本题也是区间dp,贪心可证,每一次出发必定是从端点,否则必然有重复,不会是最小值,那我们可以设dpi,j,0/1,0代表从左端点出发,1代表从右端点,因为每次都是从端点出发,状态方程为 dp ...
 - Caffe2 图像预处理(Image Pre-Processing)[6]
			
学习如何使得图像符合预训练模型的需求,或者用其他数据集的图像来测试自己的模型. - 调整大小 - 缩放 - HWC和CHW,数据通道交换 - RGB和BGR,颜色通道的交换 - Caffe2的图像预处 ...
 - GitHub 网站汉化
			
居然是一个中文Github网站!该不会是个假的吧? 2018-09-03 17:30 前几天分享了一篇文章——3个搜索技巧!在 GitHub上快速找到实用资源!眼尖心细的读者发现了文中的Github网 ...