D. Spongebob and Squares
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Spongebob is already tired trying to reason his weird actions and calculations, so he simply asked you to find all pairs of n and m, such that there are exactly x distinct
squares in the table consisting of n rows and m columns.
For example, in a 3 × 5 table there are 15squares
with side one, 8 squares with side two and 3 squares
with side three. The total number of distinct squares in a 3 × 5 table is15 + 8 + 3 = 26.

Input

The first line of the input contains a single integer x (1 ≤ x ≤ 1018) —
the number of squares inside the tables Spongebob is interested in.

Output

First print a single integer k — the number of tables with exactly x distinct
squares inside.

Then print k pairs of integers describing the tables. Print the pairs in the order of increasing n,
and in case of equality — in the order of increasing m.

Sample test(s)
input
26
output
6
1 26
2 9
3 5
5 3
9 2
26 1
input
2
output
2
1 2
2 1
input
8
output
4
1 8
2 3
3 2
8 1
Note

In a 1 × 2 table there are 2 1 × 1 squares.
So, 2 distinct squares in total.

In a 2 × 3 table there are 6 1 × 1 squares
and 2 2 × 2 squares. That
is equal to 8 squares in total.

题意是给定一个X,问那些矩形中含有的正方形总数等于X。

这题当时没时间做了,(太弱。。。)后面补的。

官方题解:

第一点:n*m里面的正方形数量就是sum((n-i)*(m-i)),i从1到n-1啊。。。在纸上画几次就明白了。

第二点:从1到n的平方和等于n(n+1)(2n+1)/6。。。

然后就是枚举n,求m。

代码:

#pragma warning(disable:4996)
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <map>
using namespace std;
typedef long long ll; const int maxn = 2000005;
ll x;
ll a[maxn];
ll b[maxn]; int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout); int flag;
ll i, len, num, n, m, temp;
cin >> x; flag = -1;
num = 0;
len = 2 * pow((double)x, ((double)1 / (double)3));
for (i = 1; i <= len+1; i++)
{
temp = 6 * x + i*i*i - i;
n = i*i + i; if ((temp % (3 * n) == 0) && (i <= temp / (3 * n)))
{
a[num] = i;
b[num] = temp / (3 * n); if (a[num] == b[num])
{
flag = num;
}
num++;
}
}
if (flag == -1)
{
cout << num * 2 << endl;
for (i = 0; i < num; i++)
{
cout << a[i] << " " << b[i] << endl;
}
for (i = num-1; i >= 0; i--)
{
cout << b[i] << " " << a[i] << endl;
}
}
else
{
cout << num * 2 - 1 << endl;
for (i = 0; i < num; i++)
{
cout << a[i] << " " << b[i] << endl;
}
for (i = num - 1; i >= 0; i--)
{
if (flag == i)
continue;
cout << b[i] << " " << a[i] << endl;
}
}
//system("pause");
return 0;
}
												

Codeforces 599D:Spongebob and Squares的更多相关文章

  1. 【27.40%】【codeforces 599D】Spongebob and Squares

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  2. Codeforces 599D Spongebob and Squares(数学)

    D. Spongebob and Squares Spongebob is already tired trying to reason his weird actions and calculati ...

  3. Codeforces Round #332 (Div. 2) D. Spongebob and Squares 数学题枚举

    D. Spongebob and Squares Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...

  4. codeforces #332 div 2 D. Spongebob and Squares

    http://codeforces.com/contest/599/problem/D 题意:给出总的方格数x,问有多少种不同尺寸的矩形满足题意,输出方案数和长宽(3,5和5,3算两种) 思路:比赛的 ...

  5. Codeforces Round #332 (Div. 2)D. Spongebob and Squares 数学

    D. Spongebob and Squares   Spongebob is already tired trying to reason his weird actions and calcula ...

  6. codeforces 599D Spongebob and Squares

    很容易得到n × m的方块数是 然后就是个求和的问题了,枚举两者中小的那个n ≤ m. 然后就是转化成a*m + c = x了.a,m≥0,x ≥ c.最坏是n^3 ≤ x,至于中间会不会爆,测下1e ...

  7. CF 599D Spongebob and Squares(数学)

    题目链接:http://codeforces.com/problemset/problem/599/D 题意:定义F(n,m)为n行m列的矩阵中方阵的个数,比如3行5列的矩阵,3x3的方阵有3个.2x ...

  8. Codeforces Round #332 (Div. 2) D. Spongebob and Squares(枚举)

    http://codeforces.com/problemset/problem/599/D 题意:给出一个数x,问你有多少个n*m的网格中有x个正方形,输出n和m的值. 思路: 易得公式为:$\su ...

  9. [cf 599D] Spongebob and Squares

    据题意: $K=\sum\limits_{i=0}^{n-1}(n-i)*(m-i)$ $K=n^2m-(n+m)\sum{i}+\sum{i^2}$ 展开化简 $m=(6k-n+n^3)/(3n^2 ...

随机推荐

  1. 理解ASP.NET Core验证模型 Claim, ClaimsIdentity, ClaimsPrincipal

    Claim, ClaimsIdentity, ClaimsPrincipal: Claim:姓名:xxx,领证日期:xxx ClaimsIdentity:身份证/驾照 ClaimsPrincipal: ...

  2. VS2017新建或拷贝项目编译时出现:找不到 Windows SDK 版本8.1.请安装所需的版本的 Windows SDK

    VS2017新建或拷贝项目编译时出现:找不到 Windows SDK 版本8.1.请安装所需的版本的 Windows SDK 或者在项目属性页的问题解决方案 解决方法: 右击项目解决方案, 选择:重定 ...

  3. linux sftp 和scp 运用

    Linux scp命令: Upload  to remote :复制本地文件到远程 Part1: Scp  -P port  local_file  remote_user@remote_ip:rem ...

  4. C++记录(一)

    1 extern 符表示该变量不是当前作用域定义的,用于声明. 如extern i;表示i不是当前作用域里的,是其他某个include的cpp文件里的变量. 2 int *p=0;相当于初始化p为空指 ...

  5. php虚拟主机下实现定时任务(仅供参考)

    因为要做简单的中控  在实现心跳包的时候遇到了困难 正常的心跳包思路是这样的  举个例子 我写一个登陆签到脚本   当我登陆成功的时候 会把登陆成功这个状态传递给网络上的中控端 当我签到完成的时候会把 ...

  6. springboot笔记-1.自动化配置的关键

    最近发现看过的东西容易忘,但是写一遍之后印象倒是会深刻的多. 总所周知springboot极大的简化了java开发繁琐性,而其最大的优势应该就是自动化配置了.比如要使用redis,我们直接引入相关的包 ...

  7. 【JavaScript基础#2】

    " 目录 #. 函数 1. 定义 2. arguments 参数 3. 全局变量与局部变量 4. 语法分析 #. 内置对象和方法 1. 自定义对象 2. 类之继承 3. Date 4. JS ...

  8. jmeter csv 插件讲解

    1.变量名称 name,pwd 格式表示因为文本中分割默认是逗号所以变量设置也是按此格式如果想按其他格式可以在分隔符栏自定义 2.忽略首行: 有的csv读取你希望读取的数据有header如: user ...

  9. Centos610安装Archiva

    安装说明: https://www.cwiki.us/display/ArchivaZH/Linux+Installing+Standalone 1.下载地址 https://archiva.apac ...

  10. java比较时间的方法

    一.通过compareTo Date date = new Date(1576118709574L); Date date1 = new Date(1576118709574L); Date date ...