优雅地对泛型List 进行深拷贝
public class People
{
public string Name;
public int Age; public People(string name, int age)
{
this.Name = name;
this.Age = age;
} public People Clone()
{
return new People(this.Name, this.Age);
}
} List<People> pList = new List<People>();
pList.Add(new People("A", ));
pList.Add(new People("B", ));
pList.Add(new People("C", )); List<People> pList2 = new List<People>(pList.Count);
// 拷贝
pList.ForEach(delegate(People item)
{
pList2.Add(item.Clone());
});
优雅地对泛型List 进行深拷贝的更多相关文章
- 一步步分析Java深拷贝的两种方式-clone和序列化
今天遇到一道面试题,询问深拷贝的两种方法.主要就是clone方法和序列化方法.今天就来分析一下这两种方式如何实现深拷贝.如果想跳过解析的朋友,直奔"重点来了!"寻找答案. clon ...
- 【设计模式】桥接模式 Bridge Pattern
开篇还是引用吕振宇老师的那篇经典的文章<设计模式随笔-蜡笔与毛笔的故事>.这个真是太经典了,没有比这个例子能更好的阐明桥接模式了,这里我就直接盗来用了. 现在市面上卖的蜡笔很多,各种型号, ...
- C# 委托、事件,lamda表达式
参考文章 1. 委托Delegate C#中的Delegate对应于C中的指针,但是又有所不同C中的指针既可以指向方法,又可以指向变量,并且可以进行类型转换, C中的指针实际上就是内存地址变量,他是可 ...
- [转]C# 委托、事件,lamda表达式
1. 委托Delegate C#中的Delegate对应于C中的指针,但是又有所不同C中的指针既可以指向方法,又可以指向变量,并且可以进行类型转换, C中的指针实际上就是内存地址变量,他是可以直接操作 ...
- net core天马行空系列: 泛型仓储和声明式事物实现最优雅的crud操作
系列目录 1.net core天马行空系列:原生DI+AOP实现spring boot注解式编程 哈哈哈哈,大家好,我就是那个高产似母猪的三合,长久以来,我一直在思考,如何才能实现高效而简洁的仓储模式 ...
- Asp.Net Core SignalR 用泛型Hub优雅的调用前端方法及传参
继续学习 最近一直在使用Asp.Net Core SignalR(下面成SignalR Core)为小程序提供websocket支持,前端时间也发了一个学习笔记,在使用过程中稍微看了下它的源码,不得不 ...
- 编写高质量代码:改善Java程序的151个建议(第7章:泛型和反射___建议106~109)
建议106:动态代理可以使代理模式更加灵活 Java的反射框架提供了动态代理(Dynamic Proxy)机制,允许在运行期对目标类生成代理,避免重复开发.我们知道一个静态代理是通过主题角色(Prox ...
- C#的泛型的类型参数可以有带参数的构造函数的约束方式吗?
Review后看到标题让我十分羞愧自己语文功底太差,估计...请见谅......我还特地把这句写回开头了...... 问题 前天遇到的一个问题,所以在MSDN发了个问,刚也丰富了下问题,关于泛型的. ...
- c#泛型的使用[转]
在2005年底微软公司正式发布了C# 2.0,与C# 1.x相比,新版本增加了很多新特性,其中最重要的是对泛型的支持.通过泛型,我们可以定义类型安全的数据结构,而无需使用实际的数据类型.这能显著提高性 ...
随机推荐
- Linux 查看版本详情
内核版本的信 uname -a -a选项表示察看所有的信息,但是从输出信息可以看出来,uname看到的版本信息,只是内核版本的信息,而不是发行版的版本信息 查看发行版信息 $cat /etc/issu ...
- Excel多条件筛选求和
单位A 代码B 面积(㎡)C A组 011 124 A组 123 15 A组 011 356 A组 123 44 B组 123 31 B组 011 2 B组 123 2 按照单位和代码求面积的和,可以 ...
- 【原创】Sliding Window Maximum 解法分析
这道题是lintcode上的一道题,当然leetcode上同样有. 本题需要寻找O(N)复杂度的算法. 解体思路比较有特点,所以容易想到参考 最小栈 的解题办法. 但是最小栈用栈维护最小值很直观,这道 ...
- php程序员应具有的7种能力
php程序员应具有什么样的能力,才能更好的完成工作,才会有更好的发展方向呢?在中国我想您不会写一辈子代码的,那样不可能,过了黄金期,您又怎么办呢?看了本文后,希望对您有所帮助. 一,php能力 1,了 ...
- Android L 使用ART能提高多少性能?
点击打开链接 刚刚结束的 Google I/O 大会上,Android 下一代操作系统「L」带来不少惊喜.新系统运行更快.更省电. 然而开发者对这个新系统也有颇多疑问,比如新的运行模式 ART 对开发 ...
- python 字符串换行的三种方式
if __name__ == '__main__': #第一种: 三个单引号 print ''' aaaaaaaaaaaaaaaa bbbbbbbbbbbbbb''' #第二种: 三个 ...
- Qt之运行一个实例进程
简述 发布程序的时候,我们往往会遇到这种情况: 只需要用户运行一个实例进程 用户可以同时运行多个实例进程 一个实例进程的软件有很多,例如:360.酷狗- 多个实例进程的软件也很多,例如:Visual ...
- Sass结合Modernizr的使用方法
Modernizr在初始化的时候会首先找寻class=“no-js”的元素: <!DOCTYPE html> <html class="no-js"> &l ...
- LA 4119 (差分数列 多项式) Always an integer
题意: 给出一个形如(P)/D的多项式,其中P是n的整系数多项式,D为整数. 问是否对于所有的正整数n,该多项式的值都是整数. 分析: 可以用数学归纳法证明,若P(n)是k次多项式,则P(n+1) - ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...