题目:

Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.

For example:

Given num = 38, the process is like: 3 + 8 = 111 + 1 = 2. Since 2 has only one digit, return it.

Follow up:
Could you do it without any loop/recursion in O(1) runtime?

Hint:

    1. A naive implementation of the above process is trivial. Could you come up with other methods?
    2. What are all the possible results?
    3. How do they occur, periodically or randomly?
    4. You may find this Wikipedia article useful.

链接: http://leetcode.com/problems/add-digits/

题解:

又是数学题,求digital root。循环叠加比较容易,但看了wiki以后发现了公式,还是用公式算吧。这种数学题对数学不好的我来说真是头大。原理10 % 9 或者 100 % 9都等于 1 % 9。举个例子n = abc = a  * 100 + b * 10 + c,那么 (a*100 + b * 10 + c) % 9 = (a + b + c) % 9。由此n == 0时,result = 0, n % 9 == 0时, 说明a + b + c = 9,我们返回9,对于其他数字, (a + b + c)等于res % 9。

Time Complexity - O(1), Space Complexity - O(1)

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

二刷:

Java:

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

三刷:

发现前两刷其实并没有完全理解,也许就是看了discuss区的答案而已。为什么(a + b + c) mod 9 = (abc) mod 9, 真正用到的公式是modulo运算的分配和结合律。

1.  (a + b) mod n  = ((a mod n) + (b mod n)) mod n

2.  (a * b) mod n = ((a mod n) * (b mod n)) mod n

假如一个数字的三位字符是abc,那么这个数等于 a * 100 + b * 10 + c, 根据分配律,  (a * 100) mod 9 = ((a mod 9) * (100 mod 9)) mod 9 = a mod 9,b和c同理, 所以 (a * 100 + b * 10 + c) mod 9 = (a + b + c) mod 9。  我们还可以使用一个小技巧,再用一次分配律直接用 (num - 1) mod 9 + 1来得到结果,这样可以避免一些边界条件的判断。

public class Solution {
public int addDigits(int num) {
if (num == 0) {
return 0;
}
int res = num % 9;
return res == 0 ? 9 : res;
}
}
public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

Update:

public class Solution {
public int addDigits(int num) {
if (num <= 0) return 0;
return (num % 9 == 0) ? 9 : num % 9;
}
}

Reference:

https://en.wikipedia.org/wiki/Digital_root

https://en.wikipedia.org/wiki/Modulo_operation

https://leetcode.com/discuss/67755/3-methods-for-python-with-explains

https://leetcode.com/discuss/52122/accepted-time-space-line-solution-with-detail-explanations

https://leetcode.com/discuss/55910/two-lines-c-code-with-explanation

258. Add Digits的更多相关文章

  1. 258. Add Digits(C++)

    258. Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has ...

  2. LeetCode Javascript实现 258. Add Digits 104. Maximum Depth of Binary Tree 226. Invert Binary Tree

    258. Add Digits Digit root 数根问题 /** * @param {number} num * @return {number} */ var addDigits = func ...

  3. LN : leetcode 258 Add Digits

    lc 258 Add Digits lc 258 Add Digits Given a non-negative integer num, repeatedly add all its digits ...

  4. 【LeetCode】258. Add Digits (2 solutions)

    Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  5. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

  6. (easy)LeetCode 258.Add Digits

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  7. Java [Leetcode 258]Add Digits

    题目描述: Given a non-negative integer num, repeatedly add all its digits until the result has only one ...

  8. 【LeetCode】258. Add Digits

    题目: Given a non-negative integer num, repeatedly add all its digits until the result has only one di ...

  9. 【一天一道LeetCode】#258. Add Digits

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

随机推荐

  1. UserLogin

    DAL: IUserDAL namespace Dal { /// <summary> /// This interface is defined for user functions. ...

  2. vim命令总结

    前言 本文翻译自:http://bencrowder.net/files/vim-fu/,参考了VIM中文帮助. Google翻译结果和实际操作结果,对原文的部分内容重新整理,删除和添加了 部分内容并 ...

  3. ASP.NET操作WMI

    WMI Functions from ASP.NET   Introduction This article demonstrates how to use WMI in ASP.NET to cre ...

  4. yii2怎样写规则可以隐藏url地址里的控制器名字

    yii2怎样写规则可以隐藏url地址里的控制器名字,例如现在的是***.com/site/index.html要变成***.com/index.html '<action:index>.h ...

  5. easyui toolbar 可以放在datagrid底下

    html: <div class="easyui-tabs" style="height: 250px;" tools="#t_rank&quo ...

  6. Regex.Match 方法

    Regex.Match 方法 在输入字符串中搜索正则表达式的匹配项,并将精确结果作为单个 Match 对象返回. 重载列表      (1) 在指定的输入字符串中搜索 Regex 构造函数中指定的正则 ...

  7. android退出登陆后,清空之前所有的activity,进入登陆主界面

    如题: android退出登陆后,清空之前所有的activity,进入登陆主界面 在退出登陆时只需要增加一个intent标志 Intent intent_login = new Intent(); i ...

  8. mysql存储过程 OUT or INOUT argument 3 for routine

    mysql存储过程出现: OUT or INOUT argument 3 for routine gotask.UserLogin is not a variable or NEW pseudo-va ...

  9. 2140: 稳定婚姻 - BZOJ

    Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就 ...

  10. 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 354[Sub ...