题目:

Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.

For example:

Given num = 38, the process is like: 3 + 8 = 111 + 1 = 2. Since 2 has only one digit, return it.

Follow up:
Could you do it without any loop/recursion in O(1) runtime?

Hint:

    1. A naive implementation of the above process is trivial. Could you come up with other methods?
    2. What are all the possible results?
    3. How do they occur, periodically or randomly?
    4. You may find this Wikipedia article useful.

链接: http://leetcode.com/problems/add-digits/

题解:

又是数学题,求digital root。循环叠加比较容易,但看了wiki以后发现了公式,还是用公式算吧。这种数学题对数学不好的我来说真是头大。原理10 % 9 或者 100 % 9都等于 1 % 9。举个例子n = abc = a  * 100 + b * 10 + c,那么 (a*100 + b * 10 + c) % 9 = (a + b + c) % 9。由此n == 0时,result = 0, n % 9 == 0时, 说明a + b + c = 9,我们返回9,对于其他数字, (a + b + c)等于res % 9。

Time Complexity - O(1), Space Complexity - O(1)

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

二刷:

Java:

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

三刷:

发现前两刷其实并没有完全理解,也许就是看了discuss区的答案而已。为什么(a + b + c) mod 9 = (abc) mod 9, 真正用到的公式是modulo运算的分配和结合律。

1.  (a + b) mod n  = ((a mod n) + (b mod n)) mod n

2.  (a * b) mod n = ((a mod n) * (b mod n)) mod n

假如一个数字的三位字符是abc,那么这个数等于 a * 100 + b * 10 + c, 根据分配律,  (a * 100) mod 9 = ((a mod 9) * (100 mod 9)) mod 9 = a mod 9,b和c同理, 所以 (a * 100 + b * 10 + c) mod 9 = (a + b + c) mod 9。  我们还可以使用一个小技巧,再用一次分配律直接用 (num - 1) mod 9 + 1来得到结果,这样可以避免一些边界条件的判断。

public class Solution {
public int addDigits(int num) {
if (num == 0) {
return 0;
}
int res = num % 9;
return res == 0 ? 9 : res;
}
}
public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

Update:

public class Solution {
public int addDigits(int num) {
if (num <= 0) return 0;
return (num % 9 == 0) ? 9 : num % 9;
}
}

Reference:

https://en.wikipedia.org/wiki/Digital_root

https://en.wikipedia.org/wiki/Modulo_operation

https://leetcode.com/discuss/67755/3-methods-for-python-with-explains

https://leetcode.com/discuss/52122/accepted-time-space-line-solution-with-detail-explanations

https://leetcode.com/discuss/55910/two-lines-c-code-with-explanation

258. Add Digits的更多相关文章

  1. 258. Add Digits(C++)

    258. Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has ...

  2. LeetCode Javascript实现 258. Add Digits 104. Maximum Depth of Binary Tree 226. Invert Binary Tree

    258. Add Digits Digit root 数根问题 /** * @param {number} num * @return {number} */ var addDigits = func ...

  3. LN : leetcode 258 Add Digits

    lc 258 Add Digits lc 258 Add Digits Given a non-negative integer num, repeatedly add all its digits ...

  4. 【LeetCode】258. Add Digits (2 solutions)

    Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  5. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

  6. (easy)LeetCode 258.Add Digits

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  7. Java [Leetcode 258]Add Digits

    题目描述: Given a non-negative integer num, repeatedly add all its digits until the result has only one ...

  8. 【LeetCode】258. Add Digits

    题目: Given a non-negative integer num, repeatedly add all its digits until the result has only one di ...

  9. 【一天一道LeetCode】#258. Add Digits

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

随机推荐

  1. 【笔记】W3C CSS关键属性

    white-space属性: white-space 属性设置如何处理元素内的空白. 可能的值 值 描述 normal 默认值,合并所有空格,换行符会被浏览器忽略 pre 空白会被浏览器保留.其行为方 ...

  2. MySQL 多实例给root用户创建密码

    DB:5.5.14 OS:CentOS 6.3 安装多实例MySQL数据库,安装完成后默认无密码,一次性给所有实例的root账户创建密码: #!/bin/bash for i  in {3361..3 ...

  3. 从零开始学ios开发(十二):Table Views(中)UITableViewCell定制

    我们继续学习Table View的内容,这次主要是针对UITableViewCell,在前一篇的例子中我们已经使用过UITableViewCell,一个默认的UITableViewCell包含imag ...

  4. cocos2dx中的格子地图TileMap

    格子地图的优点: a.节省内存,我们知道对于一款游戏来说,如果以图片来作为地图的话,对于神庙逃亡,魂斗罗这样的场景很多,地图很长的游戏显然不现实,因为图片很占内存,但是这些游戏的地图有一个特点就是:重 ...

  5. C#基础原理拾遗——面试都爱问的委托和事件(纠正)

    这篇博客是我昨天写的,文中的观点有些问题,后经过网友留言和个人学习发现错误,原文还是保留,更改补在后面,不怕贻笑大方,唯恐误人子弟.不知道还能不能放在首页,让被误导的同学再被反误导一次. 一.原文 几 ...

  6. C#中类型分析中的常见问题 Type - 转

    http://www.cnblogs.com/yuanyuan/archive/2012/08/16/2642281.html 写代码的时候经常需要分析已有类型的信息例如:分析现有类型自动生成类, 或 ...

  7. 清橙A1363. 水位 - 清华大学2012年信息学优秀高中学子夏令营

    问题描述 有一个正方形的地区,该地区特点鲜明:如果把它等分为N×N个小正方形格子的话,在每个格子内的任意地点的地表高度是相同的,并且是一个0到M之间的整数.正方形地区的外部被无限高的边界包围. 该地区 ...

  8. c++ linux 下的调试工具及用法

    1当程序出现core的时候: gdb out[your program] core.out.45726.1431954543 可以看到程序崩溃时候的堆栈信息. valgrind ./out 由于val ...

  9. phonegap 环境搭建

    经过了一番讨论,最后还是决定用phonegap来开发产品.因为用phonegap的人力成本相比原生开发还是节省了不少,并且可以跨平台.至于软件的运行效率,在ios上还是相当流畅的,在android上就 ...

  10. hdu 4888

    网络流建模,建模不难,难在找环: #include<cstdio> #include<algorithm> #include<vector> #include< ...