Codeforces 628D 数位dp
题意:d magic number(0<=d<9)的意思就是一个数,从最高位开始奇数位不是d,偶数位是d
题目问,给a,b,m,d(a<=b,m<2000)问,a,b之间有多少个数满足既是d magic number,又可以被m整除
a,b的范围很大,都是2000位,且a,b的位数一样,这一点很重要
分析:这题一看又有取模,又是大整数,那肯定是要用数位dp做,
通常的数位dp,我们要解决(0,x)的区间中的答案,但是这个题不需要,
注意刚才我说过一点,a,b是位数相同的整数,假设solve()函数能解决x到和它同位的最小整数的区间范围内的答案
那么最终答案,就是solve(b)-solve(a)+is(a),
这样我们的工作就简单了,不需要统计位数比它小的数
我们从高位开始进行dp
下面定义状态
1: dp[i][j][1],代表现在处理到第 i 位 且前缀 i 位形成的整数n%m=j 的 方案数,且现在形成的整数等于上限
2: dp[i][j][0],代表现在处理到第 i 位 且前缀 i 位形成的整数n%m=j 的 方案数,且现在形成的整数小于上限
那么状态转移方程就很好想了
设字符串长度为n 那么时间复杂度是O(nm)的
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 2e3+;
const int mod = 1e9+;
int dp[N][N][],num[N],m,d;
char a[N],b[N];
int solve(char *s)
{
int l=strlen(s+);
memset(dp,,sizeof(dp));
for(int i=; i<=l; ++i)
num[i]=s[i]-'';
for(int i=; i<=; ++i)
{
if(i==d)continue;
if(i<num[])++dp[][i%m][];
else if(i==num[])++dp[][i%m][];
}
for(int i=; i<=l; ++i)
{
if(i%==)
{
for(int j=; j<m; ++j)
{
int cur=(j*+d)%m;
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
if(d<num[i])
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
else if(num[i]==d)
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
}
}
else
{
for(int k=; k<; ++k)
{
if(k==d)continue;
for(int j=; j<m; ++j)
{
int cur=(j*+k)%m;
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
if(k<num[i])
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
else if(k==num[i])
dp[i][cur][]=(dp[i][cur][]+dp[i-][j][])%mod;
}
}
}
}
return (dp[l][][]+dp[l][][])%mod;
}
int judge(char *s)
{
int l=strlen(s+),sum=;
for(int i=;i<=l;++i)
{
int x=s[i]-'';
if(i%&&x==d)return ;
if(!(i%)&&x!=d)return ;
sum=(sum*+x)%m;
}
if(!sum)return ;
return ;
}
int main()
{
scanf("%d%d%s%s",&m,&d,a+,b+);
int ans=(solve(b)-solve(a)+judge(a)+mod)%mod;
printf("%d\n",ans);
return ;
}
Codeforces 628D 数位dp的更多相关文章
- Codeforces 55D (数位DP+离散化+数论)
题目链接: http://poj.org/problem?id=2117 题目大意:统计一个范围内数的个数,要求该数能被各位上的数整除.范围2^64. 解题思路: 一开始SB地开了10维数组记录情况. ...
- codeforces 401D (数位DP)
思路:很明显的数位dp,设dp[i][j] 表示选取数字的状态为i,模m等于j的数的个数,那么最后的答案就是dp[(1<<n)-1][0].状态转移方程就是,dp[i|(1<< ...
- Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)
大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...
- Codeforces - 914C 数位DP
题意有点难以描述,简略的就是给定一个二进制\(n\),每一步操作能使\(n\)的位为1的数的和转化为一个十进制,然后转化为该数的二进制再进行相同的操作 查询\([0,n]\)中操作数恰好为\(k\)的 ...
- codeforces 55D 数位dp
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Shovel Sale CodeForces - 899D (数位dp)
大意: n把铲子, 价格1,2,3,...n, 求有多少个二元组(x,y), 满足x+y末尾数字9的个数最多. 枚举最高位, 转化为从[1,n]中选出多少个二元组和为$x$, 枚举较小的数 若$n\g ...
- codeforces Hill Number 数位dp
http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits: 5000 MS Memory Limits: ...
- codeforces 55D - Beautiful numbers(数位DP+离散化)
D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Gym 100231L Intervals 数位DP
Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description Start with an integer, N0, ...
随机推荐
- iOS工程中的info.plist文件
我们建立一个工程后,会在Supporting files下面看到一个"工程名-Info.plist"的文件,这个是对工程做一些运行期配置的文件,很重要,不能删除. 如果你在网上下载 ...
- poj 3207 Ikki's Story IV - Panda's Trick (2-SAT)
http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS Memory Limit: 13 ...
- php+mysql分页类的入门实例
php+mysql分页类的简单代码 时间:2016-02-25 06:16:26来源:网络 导读:php+mysql分页类的简单代码,二个php分页类代码,对商品进行分页展示,当前页面数,每个页面展示 ...
- 如何在DJANGO里获取?带数据的东东,基于CBV
用DEF的,有现成的,而用CLASS的,就要作一下变通. 如下: if self.request.GET: if self.request.GET.get('search_pk'): search_p ...
- DJANGO中filter_horizontal和raw_id_fields的作用
在作多项选择的操作方便性,及单项选择太多时,会有好一点的体验... class UserAuthorAdmin(admin.ModelAdmin): # raw_id_fields = ('group ...
- 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...
- 深入理解ClassLoader(五)—类的卸载
原文地址:http://yhjhappy234.blog.163.com/blog/static/316328322011101413730764/?suggestedreading&wumi ...
- Android:监听ListView
本文目录 监听ListView点击事件 监听ListView滚动事件 监听ListView点击事件 使用监听器OnItemClickListener package com.example.tests ...
- 【Oracle连接字符串】【Oracle Net Manager 服务命名配置】【PL/SQL 登陆数据库】
连接数据库的几个重要参数: 1. 登陆用户名:user: 2. 登录密码:password: 3. 存放数据库的服务器地址(server_ip)和端口(server_port): 4. 数据库名(db ...
- RedMine项目管理系统安装问题(Linux版一键安装包)
安装环境 操作环境:VMware下安装的Parrot Security OS 系统 使用软件:bitnami-redmine---linux-x64-installer.run 问题描述: 安装步骤与 ...