Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负。

Dijkstra算法是贪婪算法的一个很好的例子。设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定。算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u

的所有出边进行松弛。如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新。

如上图,u为源点,顶点全加入到优先队列中。

,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x、v、w),队列最小值为x。

将x出列加入S,将x的出边松弛(v、y、w),其中w的值需要更新(4<5),队列最小值为v。

将v出列,加入到S中,将v的出边松弛(w),因x已在S中,故不做松弛。队列中的最小值为y。

将y出列,y加入到S,松弛y的出边(w、z),更新w的值(3<4),队列最小值为w。

将w出列,加入到S中,松弛w的出边(z),队列最小值为z。

将z出列,加入到S中。将z的出边松弛(无),此时队列为空,算法结束。

Dijkstra算法的运行时间依赖于最小优先队列的具体实现。如果简单的运用数组实现求最小值,运行时间为O(V2+E)=O(V2)。

如果图比较稀疏,E=o(V2/lgV),如果用二叉最小堆实现,则为O((V+E)lgV)。

如果用斐波那契堆实现,可以提升到O(VlgV+E)。

import sys
class Vertex(object):
def __init__(self,key):
self.id=key
self.adj={}
def addNeighbor(self,nbr,weight=0):
self.adj[nbr]=weight
def getNeighbors(self):
return self.adj.keys()
def getId(self):
return self.id
def getWeight(self,key):
return self.adj[key]
class Graph(object):
def __init__(self):
self.vertexlist={}
self.size=0
def addVertex(self,key):
vertex=Vertex(key)
self.vertexlist[key]=vertex
self.size+=1
return vertex
def getVertex(self,key):
return self.vertexlist.get(key)
def __contains__(self,key):
if key in self.vertexlist:
return True
else:
return False
def addEdge(self,f,t,weight=0):
if f not in self.vertexlist:
self.addVertex(f)
if t not in self.vertexlist:
self.addVertex(t)
self.vertexlist[f].addNeighbor(self.vertexlist[t],weight)
def getVertices(self):
return self.vertexlist.keys()
def __iter__(self):
return iter(self.vertexlist.values())
def Dijkstra(G,s):
path={}
vertexlist=[]
for v in G:
vertexlist.append(v)
path[v]=sys.maxsize
path[s]=0
queue=PriorityQueue(path)
queue.buildHeap(vertexlist)
while queue.size>0:
vertex=queue.delMin()
for v in vertex.getNeighbors():
newpath=path[vertex]+vertex.getWeight(v)
if newpath<path[v]:
path[v]=newpath
queue.perUp(v)
return path
class PriorityQueue(object):
def __init__(self,path):
self.path=path
self.queue=[]
self.size=0
def buildHeap(self,alist):
self.queue=alist
self.size=len(alist)
for i in xrange(self.size/2-1,0,-1):
self._perDown(i)
def delMin(self):
self.queue[0],self.queue[-1]=self.queue[-1],self.queue[0]
minvertex=self.queue.pop()
self.size-=1
self._perDown(0)
return minvertex def perUp(self,v):
i=self.queue.index(v)
self._perUp(i)
def _perUp(self,i):
if i>0:
if self.path[self.queue[i]]<=self.path[self.queue[(i-1)/2]]:
self.queue[i],self.queue[(i-1)/2]=self.queue[(i-1)/2],self.queue[i]
self._perUp((i-1)/2)
def _perDown(self,i):
left=2*i+1
right=2*i+2
little=i
if left<=self.size-1 and self.path[self.queue[left]]<=self.path[self.queue[i]]:
little=left
if right<=self.size-1 and self.path[self.queue[right]]<=self.path[self.queue[little]]:
little=right
if little!=i:
self.queue[i],self.queue[little]=self.queue[little],self.queue[i]
self._perDown(little) if __name__=='__main__':
g= Graph()
g.addEdge('u','x',1)
g.addEdge('u','v',2)
g.addEdge('u','w',5)
g.addEdge('x','v',2)
g.addEdge('x','y',1)
g.addEdge('x','w',3)
g.addEdge('v','w',3)
g.addEdge('y','w',1)
g.addEdge('y','z',1)
g.addEdge('w','z',5)
u=g.getVertex('u')
path=Dijkstra(g,u)
for v in path:
print v.id,path[v]

  

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法的更多相关文章

  1. 单源最短路径(dijkstra算法)php实现

    做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...

  2. 【算法导论】单源最短路径之Dijkstra算法

    Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...

  3. 0016:单源最短路径(dijkstra算法)

    题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...

  4. 单源最短路径:Dijkstra算法(堆优化)

    前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...

  5. 单源最短路径问题-Dijkstra算法

    同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...

  6. 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  7. 【算法设计与分析基础】25、单起点最短路径的dijkstra算法

    首先看看这换个数据图 邻接矩阵 dijkstra算法的寻找最短路径的核心就是对于这个节点的数据结构的设计 1.节点中保存有已经加入最短路径的集合中到当前节点的最短路径的节点 2.从起点经过或者不经过 ...

  8. 单源最短路——dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 问 ...

  9. 【模板】单源最短路径(Dijkstra)/洛谷P4779

    题目链接 https://www.luogu.com.cn/problem/P4779 题目大意 给定一个 \(n\) 个点 \(m\) 条边有向图,每个点有一个非负权值,求从 \(s\) 点出发,到 ...

随机推荐

  1. C++ typedef typename

    [cpp] view plaincopy template<typename T> class A { public: typedef T a_type; }; template<t ...

  2. MySQL导入txt文件

    "Flufy","Harold","cat","f","1993-2-4" "claws& ...

  3. git 客户端 代码下载与提交

    (1)git clone 服务器用户名@服务器IP:~/Git目录/.git 功能:下载服务器端Git仓库中的文件或目录到本地当前目录. (2)对Git目录中的文件进行修改. (3)git statu ...

  4. c/c++编译原理

    转载自:http://blog.csdn.net/chengocean/article/details/6250779C源程序-->预编译处理(.c)-->编译.优化程序(.s..asm) ...

  5. Fortify 4.0 帮助文档下载

    Fortify 4.0 帮助文档下载 http://pan.baidu.com/s/1hqzbF8o

  6. JAVA白盒安全测试需要关注的API

    JAVA白盒安全测试需要关注的APIhttp://blog.csdn.net/testing_is_believing/article/details/19502167

  7. 关于Collections中的sort()方法总结

    用Java集合中的Collections.sort方法对list排序的两种方法 本文部分引用自:http://my.oschina.net/leoson/blog/131904 用Collection ...

  8. 解决codeforces访问慢的问题

    转载至:http://blog.csdn.net/wmx16835/article/details/38639451 前阵子打Codeforces(以下简称CF),每次比赛的时候都要等待网页刷新.不是 ...

  9. Flash cs6 帧上的菱形原来是关键帧

    假如需要删除这个关键帧,选中它,然后右键,"清除关键帧",相应的类型即可. 因为之前学了一点点Flash,没见过帧上面这个菱形图标,才知道是关键帧.

  10. 3.x vector的用法

    #include<vector> //struct struct GOLD_STRUCT {     Sprite  * goldspSprite;     int goldValue; ...