jgroup 概述--官方文档
原文地址:http://www.jgroups.org/manual/html/ch01.html#
Chapter 1. Overview
Group communication uses the terms group and member. Members are part of a group. In the more common terminology, a member is a node and a group is a cluster. We use these terms interchangeably.
A node is a process, residing on some host. A cluster can have one or more nodes belonging to it. There can be multiple nodes on the same host, and all may or may not be part of the same cluster. Nodes can of course also run on different hosts.
JGroups is toolkit for reliable group communication. Processes can join a group, send messages to all members or single members and receive messages from members in the group. The system keeps track of the members in every group, and notifies group members when a new member joins, or an existing member leaves or crashes. A group is identified by its name. Groups do not have to be created explicitly; when a process joins a non-existing group, that group will be created automatically. Processes of a group can be located on the same host, within the same LAN, or across a WAN. A member can be part of multiple groups.
The architecture of JGroups is shown in Figure 1.1, “The architecture of JGroups”.
![]() |
Figure 1.1. The architecture of JGroups
It consists of 3 parts: (1) the Channel used by application programmers to build reliable group communication applications, (2) the building blocks, which are layered on top of the channel and provide a higher abstraction level and (3) the protocol stack, which implements the properties specified for a given channel.
This document describes how to install and use JGroups, ie. the Channel API and the building blocks. The targeted audience is application programmers who want to use JGroups to build reliable distributed programs that need group communication.
A channel is connected to a protocol stack. Whenever the application sends a message, the channel passes it on to the protocol stack, which passes it to the topmost protocol. The protocol processes the message and the passes it down to the protocol below it. Thus the message is handed from protocol to protocol until the bottom (transport) protocol puts it on the network. The same happens in the reverse direction: the transport protocol listens for messages on the network. When a message is received it will be handed up the protocol stack until it reaches the channel. The channel then invokes the receive() callback in the application to deliver the message.
When an application connects to the channel, the protocol stack will be started, and when it disconnects the stack will be stopped. When the channel is closed, the stack will be destroyed, releasing its resources.
The following three sections give an overview of channels, building blocks and the protocol stack.
1.1. Channel
To join a group and send messages, a process has to create a channel and connect to it using the group name (all channels with the same name form a group). The channel is the handle to the group. While connected, a member may send and receive messages to/from all other group members. The client leaves a group by disconnecting from the channel. A channel can be reused: clients can connect to it again after having disconnected. However, a channel allows only 1 client to be connected at a time. If multiple groups are to be joined, multiple channels can be created and connected to. A client signals that it no longer wants to use a channel by closing it. After this operation, the channel cannot be used any longer.
Each channel has a unique address. Channels always know who the other members are in the same group: a list of member addresses can be retrieved from any channel. This list is called a view. A process can select an address from this list and send a unicast message to it (also to itself), or it may send a multicast message to all members of the current view (also including itself). Whenever a process joins or leaves a group, or when a crashed process has been detected, a new view is sent to all remaining group members. When a member process is suspected of having crashed, a suspicion message is received by all non-faulty members. Thus, channels receive regular messages, and view and suspicion notifications.
The properties of a channel are typically defined in an XML file, but JGroups also allows for configuration through simple strings, URIs, DOM trees or even programmatically.
The Channel API and its related classes is described in Chapter 3, API.
1.2. Building Blocks
Channels are simple and primitive. They offer the bare functionality of group communication, and have been designed after the simple model of sockets, which are widely used and well understood. The reason is that an application can make use of just this small subset of JGroups, without having to include a whole set of sophisticated classes, that it may not even need. Also, a somewhat minimalistic interface is simple to understand: a client needs to know about 5 methods to be able to create and use a channel.
Channels provide asynchronous message sending/reception, somewhat similar to UDP. A message sent is essentially put on the network and the send() method will return immediately. Conceptual requests, orresponses to previous requests, are received in undefined order, and the application has to take care of matching responses with requests.
JGroups offers building blocks that provide more sophisticated APIs on top of a Channel. Building blocks either create and use channels internally, or require an existing channel to be specified when creating a building block. Applications communicate directly with the building block, rather than the channel. Building blocks are intended to save the application programmer from having to write tedious and recurring code, e.g. request-response correlation, and thus offer a higher level of abstraction to group communication.
Building blocks are described in Chapter 4, Building Blocks.
1.3. The Protocol Stack
The protocol stack containins a number of protocol layers in a bidirectional list. All messages sent and received over the channel have to pass through all protocols. Every layer may modify, reorder, pass or drop a message, or add a header to a message. A fragmentation layer might break up a message into several smaller messages, adding a header with an id to each fragment, and re-assemble the fragments on the receiver's side.
The composition of the protocol stack, i.e. its protocols, is determined by the creator of the channel: an XML file defines the protocols to be used (and the parameters for each protocol). The configuration is then used to create the stack.
Knowledge about the protocol stack is not necessary when only using channels in an application. However, when an application wishes to ignore the default properties for a protocol stack, and configure their own stack, then knowledge about what the individual layers are supposed to do is needed.
jgroup 概述--官方文档的更多相关文章
- 转:ArcGIS API For JavaScript官方文档(二十)之图形和要素图层——①Graphics概述
原文地址:ArcGIS API For JavaScript官方文档(二十)之图形和要素图层——①Graphics概述 ArcGIS JavaScript API允许在地图上绘制graphic(图形) ...
- 【苦读官方文档】2.Android应用程序基本原理概述
官方文档原文地址 应用程序原理 Android应用程序是通过Java编程语言来写.Android软件开发工具把你的代码和其它数据.资源文件一起编译.打包成一个APK文件,这个文档以.apk为后缀,保存 ...
- Orleans 框架3.0 官方文档中文版系列一 —— 概述
关于这个翻译文档的一些说明: 之前逛博客园的时候,看见有个园友在自己的博客上介绍Orleans. 觉得Orleans 是个好东西. 当时心想:如果后面有业务需要的时候可以用用Orleans框架. 当真 ...
- 【AutoMapper官方文档】DTO与Domin Model相互转换(上)
写在前面 AutoMapper目录: [AutoMapper官方文档]DTO与Domin Model相互转换(上) [AutoMapper官方文档]DTO与Domin Model相互转换(中) [Au ...
- Spark官方文档 - 中文翻译
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linki ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
- spring官方文档中文版
转 http://blog.csdn.net/tangtong1/article/details/51326887 spring官方文档:http://docs.spring.io/spring/do ...
- .NET Framework 版本和依赖关系[微软官方文档]
.NET Framework 版本和依赖关系 微软官方文档: https://docs.microsoft.com/zh-cn/dotnet/framework/migration-guide/ver ...
- 《KAFKA官方文档》入门指南(转)
1.入门指南 1.1简介 Apache的Kafka™是一个分布式流平台(a distributed streaming platform).这到底意味着什么? 我们认为,一个流处理平台应该具有三个关键 ...
随机推荐
- (四面体)CCPC网络赛 HDU5839 Special Tetrahedron
CCPC网络赛 HDU5839 Special Tetrahedron 题意:n个点,选四个出来组成四面体,要符合四面体至少四条边相等,若四条边相等则剩下两条边不相邻,求个数 思路:枚举四面体上一条线 ...
- mapreduce的调度算法和job调优
调度算法: mapreduce当有很多的作业在执行的时候,是按照什么顺序去执行的? 调度算法顺序需要关注: 1.提高作业的吞吐量. 2.要考虑优先级. 三种调度器:如果作业跑不完,并且机器资源利用率比 ...
- AHOI2013 Round2 Day1 简要题解
第一题,好吧这是个dp.(搜素也能在BZOJ上卡过). 第二题,BFS搜索碰到的立方体面数,智硬没有想到... 第三题,其实一看就有思路,但关键是求x坐标不交的矩形对数+y坐标不交的矩形对数 - x, ...
- centos 安装git 服务端
// 在服务端安装好git后,开始安装gitosis 3.在服务器安装gitosis sudo yum install python python-setuptools cd /usr/local/s ...
- POJ 1251 && HDU 1301 Jungle Roads (最小生成树)
Jungle Roads 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/A http://acm.hust.edu.cn/vju ...
- Spring Autowiring by Type
In Spring, "Autowiring by Type" means, if data type of a bean is compatible with the data ...
- Laravel Configuration
Introduction All of the configuration files for the Laravel framework are stored in the app/config d ...
- HDU 3966 Aragorn's Story (树链点权剖分,成段修改单点查询)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 树链剖分的模版,成段更新单点查询.熟悉线段树的成段更新的话就小case啦. //树链剖分 边权修 ...
- UVa 817 According to Bartjens (暴力,DFS)
题意:给出一个数字组成的字符串,然后在字符串内添加三种运算符号 * + - ,要求输出所有添加运算符并运算后结果等于2000的式子. 所有数字不能有前导0, 且式子必须是合法的. 析:这个题很明显的暴 ...
- 在线教育服务:http://www.ablesky.com/
在线教育服务:http://www.ablesky.com/