jgroup 概述--官方文档
原文地址:http://www.jgroups.org/manual/html/ch01.html#
Chapter 1. Overview
Group communication uses the terms group and member. Members are part of a group. In the more common terminology, a member is a node and a group is a cluster. We use these terms interchangeably.
A node is a process, residing on some host. A cluster can have one or more nodes belonging to it. There can be multiple nodes on the same host, and all may or may not be part of the same cluster. Nodes can of course also run on different hosts.
JGroups is toolkit for reliable group communication. Processes can join a group, send messages to all members or single members and receive messages from members in the group. The system keeps track of the members in every group, and notifies group members when a new member joins, or an existing member leaves or crashes. A group is identified by its name. Groups do not have to be created explicitly; when a process joins a non-existing group, that group will be created automatically. Processes of a group can be located on the same host, within the same LAN, or across a WAN. A member can be part of multiple groups.
The architecture of JGroups is shown in Figure 1.1, “The architecture of JGroups”.
![]() |
Figure 1.1. The architecture of JGroups
It consists of 3 parts: (1) the Channel used by application programmers to build reliable group communication applications, (2) the building blocks, which are layered on top of the channel and provide a higher abstraction level and (3) the protocol stack, which implements the properties specified for a given channel.
This document describes how to install and use JGroups, ie. the Channel API and the building blocks. The targeted audience is application programmers who want to use JGroups to build reliable distributed programs that need group communication.
A channel is connected to a protocol stack. Whenever the application sends a message, the channel passes it on to the protocol stack, which passes it to the topmost protocol. The protocol processes the message and the passes it down to the protocol below it. Thus the message is handed from protocol to protocol until the bottom (transport) protocol puts it on the network. The same happens in the reverse direction: the transport protocol listens for messages on the network. When a message is received it will be handed up the protocol stack until it reaches the channel. The channel then invokes the receive() callback in the application to deliver the message.
When an application connects to the channel, the protocol stack will be started, and when it disconnects the stack will be stopped. When the channel is closed, the stack will be destroyed, releasing its resources.
The following three sections give an overview of channels, building blocks and the protocol stack.
1.1. Channel
To join a group and send messages, a process has to create a channel and connect to it using the group name (all channels with the same name form a group). The channel is the handle to the group. While connected, a member may send and receive messages to/from all other group members. The client leaves a group by disconnecting from the channel. A channel can be reused: clients can connect to it again after having disconnected. However, a channel allows only 1 client to be connected at a time. If multiple groups are to be joined, multiple channels can be created and connected to. A client signals that it no longer wants to use a channel by closing it. After this operation, the channel cannot be used any longer.
Each channel has a unique address. Channels always know who the other members are in the same group: a list of member addresses can be retrieved from any channel. This list is called a view. A process can select an address from this list and send a unicast message to it (also to itself), or it may send a multicast message to all members of the current view (also including itself). Whenever a process joins or leaves a group, or when a crashed process has been detected, a new view is sent to all remaining group members. When a member process is suspected of having crashed, a suspicion message is received by all non-faulty members. Thus, channels receive regular messages, and view and suspicion notifications.
The properties of a channel are typically defined in an XML file, but JGroups also allows for configuration through simple strings, URIs, DOM trees or even programmatically.
The Channel API and its related classes is described in Chapter 3, API.
1.2. Building Blocks
Channels are simple and primitive. They offer the bare functionality of group communication, and have been designed after the simple model of sockets, which are widely used and well understood. The reason is that an application can make use of just this small subset of JGroups, without having to include a whole set of sophisticated classes, that it may not even need. Also, a somewhat minimalistic interface is simple to understand: a client needs to know about 5 methods to be able to create and use a channel.
Channels provide asynchronous message sending/reception, somewhat similar to UDP. A message sent is essentially put on the network and the send() method will return immediately. Conceptual requests, orresponses to previous requests, are received in undefined order, and the application has to take care of matching responses with requests.
JGroups offers building blocks that provide more sophisticated APIs on top of a Channel. Building blocks either create and use channels internally, or require an existing channel to be specified when creating a building block. Applications communicate directly with the building block, rather than the channel. Building blocks are intended to save the application programmer from having to write tedious and recurring code, e.g. request-response correlation, and thus offer a higher level of abstraction to group communication.
Building blocks are described in Chapter 4, Building Blocks.
1.3. The Protocol Stack
The protocol stack containins a number of protocol layers in a bidirectional list. All messages sent and received over the channel have to pass through all protocols. Every layer may modify, reorder, pass or drop a message, or add a header to a message. A fragmentation layer might break up a message into several smaller messages, adding a header with an id to each fragment, and re-assemble the fragments on the receiver's side.
The composition of the protocol stack, i.e. its protocols, is determined by the creator of the channel: an XML file defines the protocols to be used (and the parameters for each protocol). The configuration is then used to create the stack.
Knowledge about the protocol stack is not necessary when only using channels in an application. However, when an application wishes to ignore the default properties for a protocol stack, and configure their own stack, then knowledge about what the individual layers are supposed to do is needed.
jgroup 概述--官方文档的更多相关文章
- 转:ArcGIS API For JavaScript官方文档(二十)之图形和要素图层——①Graphics概述
原文地址:ArcGIS API For JavaScript官方文档(二十)之图形和要素图层——①Graphics概述 ArcGIS JavaScript API允许在地图上绘制graphic(图形) ...
- 【苦读官方文档】2.Android应用程序基本原理概述
官方文档原文地址 应用程序原理 Android应用程序是通过Java编程语言来写.Android软件开发工具把你的代码和其它数据.资源文件一起编译.打包成一个APK文件,这个文档以.apk为后缀,保存 ...
- Orleans 框架3.0 官方文档中文版系列一 —— 概述
关于这个翻译文档的一些说明: 之前逛博客园的时候,看见有个园友在自己的博客上介绍Orleans. 觉得Orleans 是个好东西. 当时心想:如果后面有业务需要的时候可以用用Orleans框架. 当真 ...
- 【AutoMapper官方文档】DTO与Domin Model相互转换(上)
写在前面 AutoMapper目录: [AutoMapper官方文档]DTO与Domin Model相互转换(上) [AutoMapper官方文档]DTO与Domin Model相互转换(中) [Au ...
- Spark官方文档 - 中文翻译
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linki ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
- spring官方文档中文版
转 http://blog.csdn.net/tangtong1/article/details/51326887 spring官方文档:http://docs.spring.io/spring/do ...
- .NET Framework 版本和依赖关系[微软官方文档]
.NET Framework 版本和依赖关系 微软官方文档: https://docs.microsoft.com/zh-cn/dotnet/framework/migration-guide/ver ...
- 《KAFKA官方文档》入门指南(转)
1.入门指南 1.1简介 Apache的Kafka™是一个分布式流平台(a distributed streaming platform).这到底意味着什么? 我们认为,一个流处理平台应该具有三个关键 ...
随机推荐
- Libsvm的MATLAB调用和交叉验证
今天听了一个师兄的讲课,才发现我一直在科研上特别差劲,主要表现在以下几个方面,(现在提出也为了督促自己在以后的学习工作道路上能够避免这些问题) 1.做事情总是有头无尾,致使知识点不能一次搞透,每次在用 ...
- 下破解安装Python开发工具WingIDE4.1
步骤: 1.将系统时间调整到一个月之前,然后执行安装. 可以使用date命令调整系统时间,如:date -s '2012-08-14 10:00:00' 2.安装成功后,打开程序,按照提示信息,申请一 ...
- VS20xx下项目开发目录管理方法
在VS20XX之后项目管理使用解决方案(solution)管理一个大的开发工程中多个项目(Project). 以下目录配置与工程名称无关,适用于一般的工程组织过程. 对于一般的生成可执行程序的工程,使 ...
- Binder机制
在Android系统的Binder机制中,由一系统组件组成,分别是Client.Server.Service Manager和Binder驱动程序,其中Client.Server和Service Ma ...
- 详解 jupyter notebook 集成 spark 环境安装
来自: 代码大湿 代码大湿 1 相关介绍 jupyter notebook是一个Web应用程序,允许你创建和分享,包含活的代码,方程的文件,可视化和解释性文字.用途包括:数据的清洗和转换.数值模拟.统 ...
- NodeJS:树的序列化
本文也在我的博客edwardesire.com上,欢迎品尝. 接着上周的工作,我们把上周反序列得到的dtree对象输出到JSON,再将其序列化后存入MongoDB. 存入文档 先将上次得到的决策树对象 ...
- gdb 技巧
现实数组: 比如说要显示a[10]中全部的内容用 p a显示的是地址,用p *a显示的是第一个元素显示全部或某一个:p (int [10])*a或者p *a@10 如果你使用 p *a@3 或 p * ...
- Java中可重入锁ReentrantLock原理剖析
本文由码农网 – 吴极心原创,转载请看清文末的转载要求,欢迎参与我们的付费投稿计划! 一. 概述 本文首先介绍Lock接口.ReentrantLock的类层次结构以及锁功能模板类AbstractQue ...
- 关于Js脚本的延迟执行
关于标签,我们有一般会放在两个地方,一个是在标签的内部,另一个是放在前面.这一次我们着重讲解一下放在标签内部.在我们用Js操作DOM元素时,如果不延时执行,DOM元素其实是根本还没有被渲染出来的. ...
- 【转载】10个有用的du命令行
10 Useful du (Disk Usage) Commands to Find Disk Usage of Files and Directories The Linux “du” (Disk ...