Lambda, filter, reduce and map

Lambda Operator

Some like it, others hate it and many are afraid of the lambda operator. We are confident that you will like it, when you have finished with this chapter of our tutorial. If not, you can learn all about "List Comprehensions", Guido van Rossums preferred way to do it, because he doesn't like Lambda, map, filter and reduce either.

becasu The lambda operator or lambda function is a way to create small anonymous functions, i.e. functions without a name. These functions are throw-away functions, i.e. they are just needed where they have been created. Lambda functions are mainly used in combination with the functions filter(), map() and reduce(). The lambda feature was added to Python due to the demand from Lisp programmers.

The general syntax of a lambda function is quite simple:
lambda argument_list: expression 
The argument list consists of a comma separated list of arguments and the expression is an arithmetic expression using these arguments. You can assign the function to a variable to give it a name. 
The following example of a lambda function returns the sum of its two arguments:

>>> f = lambda x, y : x + y
>>> f(1,1)
2

The map() Function

The advantage of the lambda operator can be seen when it is used in combination with the map() function. 
map() is a function with two arguments:

r = map(func, seq)

The first argument func is the name of a function and the second a sequence (e.g. a list) seqmap() applies the function func to all the elements of the sequence seq. It returns a new list with the elements changed by func

def fahrenheit(T):
return ((float(9)/5)*T + 32)
def celsius(T):
return (float(5)/9)*(T-32)
temp = (36.5, 37, 37.5,39) F = map(fahrenheit, temp)
C = map(celsius, F)

In the example above we haven't used lambda. By using lambda, we wouldn't have had to define and name the functions fahrenheit() and celsius(). You can see this in the following interactive session:

>>> Celsius = [39.2, 36.5, 37.3, 37.8]
>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
>>> print Fahrenheit
[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]
>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)
>>> print C
[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]
>>>

map() can be applied to more than one list. The lists have to have the same length. map() will apply its lambda function to the elements of the argument lists, i.e. it first applies to the elements with the 0th index, then to the elements with the 1st index until the n-th index is reached:

>>> a = [1,2,3,4]
>>> b = [17,12,11,10]
>>> c = [-1,-4,5,9]
>>> map(lambda x,y:x+y, a,b)
[18, 14, 14, 14]
>>> map(lambda x,y,z:x+y+z, a,b,c)
[17, 10, 19, 23]
>>> map(lambda x,y,z:x+y-z, a,b,c)
[19, 18, 9, 5]

We can see in the example above that the parameter x gets its values from the list a, while y gets its values from b and z from list c.

Filtering

The function filter(function, list) offers an elegant way to filter out all the elements of a list, for which the function function returns True. 
The function filter(f,l) needs a function f as its first argument. f returns a Boolean value, i.e. either True or False. This function will be applied to every element of the list l. Only if f returns True will the element of the list be included in the result list.

>>> fib = [0,1,1,2,3,5,8,13,21,34,55]
>>> result = filter(lambda x: x % 2, fib)
>>> print result
[1, 1, 3, 5, 13, 21, 55]
>>> result = filter(lambda x: x % 2 == 0, fib)
>>> print result
[0, 2, 8, 34]
>>>

Reducing a List

The function reduce(func, seq) continually applies the function func() to the sequence seq. It returns a single value.

If seq = [ s1, s2, s3, ... , sn ], calling reduce(func, seq) works like this:

  • At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on which reduce() works looks now like this: [ func(s1, s2), s3, ... , sn ]
  • In the next step func will be applied on the previous result and the third element of the list, i.e. func(func(s1, s2),s3)
    The list looks like this now: [ func(func(s1, s2),s3), ... , sn ]
  • Continue like this until just one element is left and return this element as the result of reduce()

We illustrate this process in the following example:

>>> reduce(lambda x,y: x+y, [47,11,42,13])
113

The following diagram shows the intermediate steps of the calculation: 

Examples of reduce()

Determining the maximum of a list of numerical values by using reduce:

>>> f = lambda a,b: a if (a > b) else b
>>> reduce(f, [47,11,42,102,13])
102
>>>

Calculating the sum of the numbers from 1 to 100:

>>> reduce(lambda x, y: x+y, range(1,101))
5050

来源链接:

http://www.python-course.eu/lambda.php

Python中Lambda, filter, reduce and map 的区别的更多相关文章

  1. python中lambda、yield、map、filter、reduce的使用

    1. 匿名函数lambda python中允许使用lambda关键字定义一个匿名函数.所谓的匿名函数就是说使用一次或者几次之后就不再需要的函数,属于"一次性"函数. #例1:求两数 ...

  2. python Lambda, filter, reduce and map

    1. lambda The lambda operator or lambda function is a way to create small anonymous functions , i.e. ...

  3. python中的filter、map、reduce、apply用法

    1. filter 功能: filter的功能是过滤掉序列中不符合函数条件的元素,当序列中要删减的元素可以用某些函数描述时,就应该想起filter函数. 调用: filter(function,seq ...

  4. Python中lambda表达式的应用

    lambda表达式 Python中定义了一个匿名函数叫做lambda表达式,个人理解实现的作用就是代替一些简单的函数,使得代码看上去更简洁并且可读性高.举个例子,我们有一个元组列表[(‘a’,1),( ...

  5. 14.在Python中lambda函数是什么

    在Python中lambda函数是什么? It is a single expression anoymous function often used as inline function. lamb ...

  6. python中lambda

    lambda_expr ::= "lambda" [parameter_list]: expression python中lambda可以理解为一个匿名函数,它的要求是函数的运算部 ...

  7. python中dtype,type,astype的区别

    python中dtype,type,astype的区别 type() dtype() astype() 函数名称 用法 type 返回参数的数据类型 dtype 返回数组中元素的数据类型 astype ...

  8. python中lambda,map,reduce,filter,zip函数

    函数式编程 函数式编程(Functional Programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.简单来讲,函 ...

  9. Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted

    1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...

随机推荐

  1. 用委托在listbox中异步显示信息,解决线程间操作无效,从不是创建控件的线程访问它

    //创建一个委托,是为访问listbox控件服务的. public delegate void UpdateTxt(string msg); //定义一个委托变量 public UpdateTxt u ...

  2. 查询sql语句所花时间

    --1:下面这种是SQL Server中比较简单的查询SQL语句执行时间方法,通过查询前的时间和查询后的时间差来计算的: declare @begin_date datetime declare @e ...

  3. 重拾C,一天一点点_2

    类型转换一般来说,如果二元运算符的两个操作数具有不同的类型,较低的类型提升为较高类型,结果为较高类型.表达式由float类型的操作数不会自动转换为double类型.使用float类型主要是为了在使用较 ...

  4. Vim自动补全神器:YouCompleteMe

    第一次听说这个插件还是在偶然的情况下看到别人的博客,听说了这个插件的大名.本来打算在实训期间来完成安装的,无奈网实在不给力,也就拖到了回家的时候.在开始准备工作的时候就了解到这个插件不是很容易安装,安 ...

  5. C# Winfrom小黄鸡功能调用

    最近研究微信公众平台,搭建了一个微信聊天机器人,调用小黄鸡的公众接口,实现在线和小黄鸡聊天的功能. 接口调用不是很麻烦,不过是php版本,所以研究了一下C#的功能模块, Winfrom版 后台界面代码 ...

  6. About Curah

    相信下列场景对您来说一点都不陌生:您遇到一个问题,花了好几个小时在网上搜寻解答和可靠的技术内容.即使前往许多技术博客和论坛翻箱倒柜后,还是无法确定要相信谁,也不知道该选哪个答案. Curah! 网站就 ...

  7. Tools for Presention

    ZoomIt v4.5 http://technet.microsoft.com/en-us/sysinternals/bb897434.aspx 微软的教师演示工具 主要有放大,画图,倒计时的功能. ...

  8. awk中文手册

    1. 前言 有关本手册 : 这是一本awk学习指引, 其重点着重于 : l        awk 适于解决哪些问题 ? l        awk 常见的解题模式为何 ? 为使读者快速掌握awk解题的模 ...

  9. Linux流量监控工具 - iftop (最全面的iftop教程)

    在类Unix系统中可以使用top查看系统资源.进程.内存占用等信息.查看网络状态可以使用netstat.nmap等工具.若要查看实时的网络流量,监控TCP/IP连接等,则可以使用iftop. 一.if ...

  10. net windows Kafka

    net windows Kafka 安装与使用入门(入门笔记) 完整解决方案请参考: Setting Up and Running Apache Kafka on Windows OS   在环境搭建 ...