Python中Lambda, filter, reduce and map 的区别
Lambda, filter, reduce and map
Lambda Operator
Some like it, others hate it and many are afraid of the lambda operator. We are confident that you will like it, when you have finished with this chapter of our tutorial. If not, you can learn all about "List Comprehensions", Guido van Rossums preferred way to do it, because he doesn't like Lambda, map, filter and reduce either.
becasu The lambda operator or lambda function is a way to create small anonymous functions, i.e. functions without a name. These functions are throw-away functions, i.e. they are just needed where they have been created. Lambda functions are mainly used in combination with the functions filter(), map() and reduce(). The lambda feature was added to Python due to the demand from Lisp programmers.
The general syntax of a lambda function is quite simple:
lambda argument_list: expression
The argument list consists of a comma separated list of arguments and the expression is an arithmetic expression using these arguments. You can assign the function to a variable to give it a name.
The following example of a lambda function returns the sum of its two arguments:
>>> f = lambda x, y : x + y
>>> f(1,1)
2
The map() Function
The advantage of the lambda operator can be seen when it is used in combination with the map() function.
map() is a function with two arguments:
r = map(func, seq)
The first argument func is the name of a function and the second a sequence (e.g. a list) seq. map() applies the function func to all the elements of the sequence seq. It returns a new list with the elements changed by func
def fahrenheit(T):
return ((float(9)/5)*T + 32)
def celsius(T):
return (float(5)/9)*(T-32)
temp = (36.5, 37, 37.5,39) F = map(fahrenheit, temp)
C = map(celsius, F)
In the example above we haven't used lambda. By using lambda, we wouldn't have had to define and name the functions fahrenheit() and celsius(). You can see this in the following interactive session:
>>> Celsius = [39.2, 36.5, 37.3, 37.8]
>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
>>> print Fahrenheit
[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]
>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)
>>> print C
[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]
>>>
map() can be applied to more than one list. The lists have to have the same length. map() will apply its lambda function to the elements of the argument lists, i.e. it first applies to the elements with the 0th index, then to the elements with the 1st index until the n-th index is reached:
>>> a = [1,2,3,4]
>>> b = [17,12,11,10]
>>> c = [-1,-4,5,9]
>>> map(lambda x,y:x+y, a,b)
[18, 14, 14, 14]
>>> map(lambda x,y,z:x+y+z, a,b,c)
[17, 10, 19, 23]
>>> map(lambda x,y,z:x+y-z, a,b,c)
[19, 18, 9, 5]
We can see in the example above that the parameter x gets its values from the list a, while y gets its values from b and z from list c.
Filtering
The function filter(function, list) offers an elegant way to filter out all the elements of a list, for which the function function returns True.
The function filter(f,l) needs a function f as its first argument. f returns a Boolean value, i.e. either True or False. This function will be applied to every element of the list l. Only if f returns True will the element of the list be included in the result list.
>>> fib = [0,1,1,2,3,5,8,13,21,34,55]
>>> result = filter(lambda x: x % 2, fib)
>>> print result
[1, 1, 3, 5, 13, 21, 55]
>>> result = filter(lambda x: x % 2 == 0, fib)
>>> print result
[0, 2, 8, 34]
>>>
Reducing a List
The function reduce(func, seq) continually applies the function func() to the sequence seq. It returns a single value.
If seq = [ s1, s2, s3, ... , sn ], calling reduce(func, seq) works like this:
- At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on which reduce() works looks now like this: [ func(s1, s2), s3, ... , sn ]
- In the next step func will be applied on the previous result and the third element of the list, i.e. func(func(s1, s2),s3)
The list looks like this now: [ func(func(s1, s2),s3), ... , sn ] - Continue like this until just one element is left and return this element as the result of reduce()
We illustrate this process in the following example:
>>> reduce(lambda x,y: x+y, [47,11,42,13])
113
The following diagram shows the intermediate steps of the calculation:
Examples of reduce()
Determining the maximum of a list of numerical values by using reduce:
>>> f = lambda a,b: a if (a > b) else b
>>> reduce(f, [47,11,42,102,13])
102
>>>
Calculating the sum of the numbers from 1 to 100:
>>> reduce(lambda x, y: x+y, range(1,101))
5050
来源链接:
http://www.python-course.eu/lambda.php
Python中Lambda, filter, reduce and map 的区别的更多相关文章
- python中lambda、yield、map、filter、reduce的使用
1. 匿名函数lambda python中允许使用lambda关键字定义一个匿名函数.所谓的匿名函数就是说使用一次或者几次之后就不再需要的函数,属于"一次性"函数. #例1:求两数 ...
- python Lambda, filter, reduce and map
1. lambda The lambda operator or lambda function is a way to create small anonymous functions , i.e. ...
- python中的filter、map、reduce、apply用法
1. filter 功能: filter的功能是过滤掉序列中不符合函数条件的元素,当序列中要删减的元素可以用某些函数描述时,就应该想起filter函数. 调用: filter(function,seq ...
- Python中lambda表达式的应用
lambda表达式 Python中定义了一个匿名函数叫做lambda表达式,个人理解实现的作用就是代替一些简单的函数,使得代码看上去更简洁并且可读性高.举个例子,我们有一个元组列表[(‘a’,1),( ...
- 14.在Python中lambda函数是什么
在Python中lambda函数是什么? It is a single expression anoymous function often used as inline function. lamb ...
- python中lambda
lambda_expr ::= "lambda" [parameter_list]: expression python中lambda可以理解为一个匿名函数,它的要求是函数的运算部 ...
- python中dtype,type,astype的区别
python中dtype,type,astype的区别 type() dtype() astype() 函数名称 用法 type 返回参数的数据类型 dtype 返回数组中元素的数据类型 astype ...
- python中lambda,map,reduce,filter,zip函数
函数式编程 函数式编程(Functional Programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.简单来讲,函 ...
- Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted
1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...
随机推荐
- 使用 rem 实现 适配各种屏幕布局
年数已久!!!技术更新太快,谨慎观看,不过作为了解一下思路还是可以的 在此呢,我只大略的谈一下在研究了px,em,rem,和手淘的做法之后,我所采用的做法及硬性规则: 我就不再过多的将上面三种单位的区 ...
- .Net中的Socket通讯
.NetFrameWork为Socket通讯提供了System.Net.Socket命名空间,在这个命名空间里面有以下几个常用的重要类分别是: ·Socket类 这个低层的类用于管理连接,WebReq ...
- SQL中的日期时间函数
之所以把日期时间函数单独拿出来回顾一下,是因为这一部分的内容比较独立,C#中也有类似的日期时间函数,趁着想得起来,写个标题先.
- Linux性能监控top及vmstat命令
监控的工具---top 第一行: 03:07:27 当前系统时间 3 days, 18:58 系统已经运行了3天18小时58分钟(在这期间没有重启过) 4 users load average: 0. ...
- 1049. Counting Ones/整数中1出现的次数(从1到n整数中1出现的次数)
The task is simple: given any positive integer N, you are supposed to count the total number of 1's ...
- linux 标准io笔记
三种缓冲 1.全缓冲:在缓冲区写满时输出到指定的输出端. 比如对磁盘上的文件进行读写通常是全缓冲的. 2.行缓冲:在遇到'\n'时输出到指定的输出端. 比如标准输入和标准输出就是行缓冲, 回车后就会进 ...
- android控件之EditText
EditText继承关系:View-->TextView-->EditTextEditText的属性很多,这里介绍几个:android:hint="请输入数字!"//设 ...
- 34 个使用 Raspberry Pi 的酷创意
如果你手头有一个 Raspberry Pi(树莓派),你会拿它来做什么?或许以下 34 个如何使用 Raspberry Pi 的创意能够给你带来一些启发. Web 服务器 家庭自动化 BitTorre ...
- 微软职位内部推荐-SDE2 (Windows - Audio)
微软近期Open的职位: SDE2 (Windows - Audio) Windows Partner Enablement team in Operating System Group is loo ...
- WPF 多线程处理(3)
WPF 多线程处理(1) WPF 多线程处理(2) WPF 多线程处理(3) WPF 多线程处理(4) WPF 多线程处理(5) WPF 多线程处理(6) 首先我们需要几个属性来保存取得的数据,因为在 ...