Python中Lambda, filter, reduce and map 的区别
Lambda, filter, reduce and map
Lambda Operator

Some like it, others hate it and many are afraid of the lambda operator. We are confident that you will like it, when you have finished with this chapter of our tutorial. If not, you can learn all about "List Comprehensions", Guido van Rossums preferred way to do it, because he doesn't like Lambda, map, filter and reduce either.
becasu The lambda operator or lambda function is a way to create small anonymous functions, i.e. functions without a name. These functions are throw-away functions, i.e. they are just needed where they have been created. Lambda functions are mainly used in combination with the functions filter(), map() and reduce(). The lambda feature was added to Python due to the demand from Lisp programmers.
The general syntax of a lambda function is quite simple:
lambda argument_list: expression
The argument list consists of a comma separated list of arguments and the expression is an arithmetic expression using these arguments. You can assign the function to a variable to give it a name.
The following example of a lambda function returns the sum of its two arguments:
>>> f = lambda x, y : x + y
>>> f(1,1)
2
The map() Function
The advantage of the lambda operator can be seen when it is used in combination with the map() function.
map() is a function with two arguments:
r = map(func, seq)
The first argument func is the name of a function and the second a sequence (e.g. a list) seq. map() applies the function func to all the elements of the sequence seq. It returns a new list with the elements changed by func
def fahrenheit(T):
return ((float(9)/5)*T + 32)
def celsius(T):
return (float(5)/9)*(T-32)
temp = (36.5, 37, 37.5,39) F = map(fahrenheit, temp)
C = map(celsius, F)
In the example above we haven't used lambda. By using lambda, we wouldn't have had to define and name the functions fahrenheit() and celsius(). You can see this in the following interactive session:
>>> Celsius = [39.2, 36.5, 37.3, 37.8]
>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)
>>> print Fahrenheit
[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]
>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)
>>> print C
[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]
>>>
map() can be applied to more than one list. The lists have to have the same length. map() will apply its lambda function to the elements of the argument lists, i.e. it first applies to the elements with the 0th index, then to the elements with the 1st index until the n-th index is reached:
>>> a = [1,2,3,4]
>>> b = [17,12,11,10]
>>> c = [-1,-4,5,9]
>>> map(lambda x,y:x+y, a,b)
[18, 14, 14, 14]
>>> map(lambda x,y,z:x+y+z, a,b,c)
[17, 10, 19, 23]
>>> map(lambda x,y,z:x+y-z, a,b,c)
[19, 18, 9, 5]
We can see in the example above that the parameter x gets its values from the list a, while y gets its values from b and z from list c.
Filtering
The function filter(function, list) offers an elegant way to filter out all the elements of a list, for which the function function returns True.
The function filter(f,l) needs a function f as its first argument. f returns a Boolean value, i.e. either True or False. This function will be applied to every element of the list l. Only if f returns True will the element of the list be included in the result list.
>>> fib = [0,1,1,2,3,5,8,13,21,34,55]
>>> result = filter(lambda x: x % 2, fib)
>>> print result
[1, 1, 3, 5, 13, 21, 55]
>>> result = filter(lambda x: x % 2 == 0, fib)
>>> print result
[0, 2, 8, 34]
>>>
Reducing a List
The function reduce(func, seq) continually applies the function func() to the sequence seq. It returns a single value.
If seq = [ s1, s2, s3, ... , sn ], calling reduce(func, seq) works like this:
- At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on which reduce() works looks now like this: [ func(s1, s2), s3, ... , sn ]
- In the next step func will be applied on the previous result and the third element of the list, i.e. func(func(s1, s2),s3)
The list looks like this now: [ func(func(s1, s2),s3), ... , sn ] - Continue like this until just one element is left and return this element as the result of reduce()
We illustrate this process in the following example:
>>> reduce(lambda x,y: x+y, [47,11,42,13])
113
The following diagram shows the intermediate steps of the calculation: 
Examples of reduce()
Determining the maximum of a list of numerical values by using reduce:
>>> f = lambda a,b: a if (a > b) else b
>>> reduce(f, [47,11,42,102,13])
102
>>>
Calculating the sum of the numbers from 1 to 100:
>>> reduce(lambda x, y: x+y, range(1,101))
5050
来源链接:
http://www.python-course.eu/lambda.php
Python中Lambda, filter, reduce and map 的区别的更多相关文章
- python中lambda、yield、map、filter、reduce的使用
1. 匿名函数lambda python中允许使用lambda关键字定义一个匿名函数.所谓的匿名函数就是说使用一次或者几次之后就不再需要的函数,属于"一次性"函数. #例1:求两数 ...
- python Lambda, filter, reduce and map
1. lambda The lambda operator or lambda function is a way to create small anonymous functions , i.e. ...
- python中的filter、map、reduce、apply用法
1. filter 功能: filter的功能是过滤掉序列中不符合函数条件的元素,当序列中要删减的元素可以用某些函数描述时,就应该想起filter函数. 调用: filter(function,seq ...
- Python中lambda表达式的应用
lambda表达式 Python中定义了一个匿名函数叫做lambda表达式,个人理解实现的作用就是代替一些简单的函数,使得代码看上去更简洁并且可读性高.举个例子,我们有一个元组列表[(‘a’,1),( ...
- 14.在Python中lambda函数是什么
在Python中lambda函数是什么? It is a single expression anoymous function often used as inline function. lamb ...
- python中lambda
lambda_expr ::= "lambda" [parameter_list]: expression python中lambda可以理解为一个匿名函数,它的要求是函数的运算部 ...
- python中dtype,type,astype的区别
python中dtype,type,astype的区别 type() dtype() astype() 函数名称 用法 type 返回参数的数据类型 dtype 返回数组中元素的数据类型 astype ...
- python中lambda,map,reduce,filter,zip函数
函数式编程 函数式编程(Functional Programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.简单来讲,函 ...
- Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted
1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...
随机推荐
- Linux操作杂记
centos7修改默认运行等级 查看当前默认运行等级: systemctl get-dafault 修改默认运行等级为5: systemctl set-default graphical.target ...
- 近期H5项目开发小结
前言:2016差不多又过了半啦,最近参与了公司好几个h5项目(严格来说,也只能算是推广页面活动).主要是新品牌的推广需要,当然也有给公司以前老客户做的案例.今天主要总结下为新品牌开发的2个h5推广:就 ...
- python杂记-6(time&datetime模块)
#!/usr/bin/env python# -*- coding: utf-8 -*-import timeprint(time.clock())##返回处理器时间,3.3开始已废弃 , 改成了ti ...
- 一,XAML基础
RuntimeNameProperty特性:为什么<Grid x:Name="grid1"></Grid>等价于<Grid Name="gr ...
- GIS论文翻译问题
1 在sci库中输入关键词,搜索一篇相关的英文。看看专业词汇怎么翻译。做个记录 2打开ArcGIS中文online和英文online帮助文档。在中文帮助中搜索中文。找到相应的位置,再切换到英文的版本中 ...
- Android系统SVC命令教程
svc命令,位置在/system/bin目录下,用来管理电源控制,无线数据,WIFI # svc svc Available commands: help Show information about ...
- 【F#】 入门代码
找下感觉: 语法和go 如出一辙, 都是erlang派的语言 在 vs 中我没有找到自动缩进的快捷键 github上的F#代码也相对较少 // 在 http://fsharp.org 上了解有关 F# ...
- spring中Bean的注入参数详解
字面值 一般指可用字符串表示的值,这些值可以通过<value>元素标签进行注入.在默认情况下,基本数据类型及其封装类.String等类型都可以采取字面值注入的方式,Spring容器在 ...
- 微软职位内部推荐-Senior Android Developer
微软近期Open的职位: Position: Senior SDE-- Mobile Products Android/iOS/WP Senior Developer Contact Person: ...
- iOS刷新第三方MJRefresh的基本使用
iOS开发中最好用的刷新第三方框架 MJRefresh GitHub : https://github.com/CoderMJLee/MJRefresh UIRefreshControl的介绍 1,U ...