BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 339 Solved: 85
[Submit][Status]
Description
给定一个长度为N的数组A[],求有多少对i, j, k(1<=i<j<k<=N)满足A[k]-A[j]=A[j]-A[i]。
Input
第一行一个整数N(N<=10^5)。
接下来一行N个数A[i](A[i]<=30000)。
Output
一行一个整数。
Sample Input
3 5 3 6 3 4 10 4 5 2
Sample Output
9
题解:
Mektpoy:
感觉n*size已经超了。。。居然可过。。。orz
代码参考了云神的,感觉自己又没代码能力,思路又捉鸡,还怎么混啊。。。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 500000+5 #define maxm 20000000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
struct cp
{
double x,y;
cp operator +(cp b){return (cp){x+b.x,y+b.y};}
cp operator -(cp b){return (cp){x-b.x,y-b.y};}
cp operator *(cp b){return (cp){x*b.x-y*b.y,x*b.y+y*b.x};}
};
int n,m,len,mx,num[maxn],l[maxn],r[maxn],st[maxn],ed[maxn],size,rev[maxn];
cp a[maxn],b[maxn],c[maxn],y[maxn];
const double PI=acos(-1.0);
void fft(cp *x,int n,int flag)
{
for0(i,n-)y[rev[i]]=x[i];
for0(i,n-)x[i]=y[i];
for(int m=;m<=n;m<<=)
{
cp wn=(cp){cos(2.0*PI/m*flag),sin(2.0*PI/m*flag)};
for(int i=;i<n;i+=m)
{
cp w=(cp){,};int mid=m>>;
for0(j,mid-)
{
cp u=x[i+j],v=x[i+j+mid]*w;
x[i+j]=u+v;x[i+j+mid]=u-v;
w=w*wn;
}
}
}
if(flag==-)for0(i,n-)x[i].x/=n;
} int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();
for1(i,n)num[i]=read(),mx=max(num[i],mx),r[num[i]]++;
mx++;mx=mx*-;m=;
while(m<=mx)m<<=,len++;mx=m;
for0(i,mx-)
{
int x=i,y=;
for1(j,len)y<<=,y|=x&,x>>=;
rev[i]=y;
}
size=;m=(n-)/size+;
for1(i,m)st[i]=ed[i-]+,ed[i]=i*size;
ed[m]=n;
ll ans=;
for1(i,m)
{
for2(j,st[i],ed[i])r[num[j]]--;
for0(j,mx-)a[j]=(cp){l[j],};
for0(j,mx-)b[j]=(cp){r[j],};
fft(a,mx,);fft(b,mx,);
for0(j,mx-)c[j]=a[j]*b[j];
fft(c,mx,-);
for2(j,st[i],ed[i])ans+=(ll)(c[*num[j]].x+0.5);
for2(j,st[i],ed[i])
{
for2(k,st[i],j-)if(*num[j]-num[k]>=)ans+=r[*num[j]-num[k]];
for2(k,j+,ed[i])if(*num[j]-num[k]>=)ans+=l[*num[j]-num[k]];
l[num[j]]++;
}
}
cout<<ans<<endl; return ; }
一堆j打成i我也是醉了。。。
BZOJ3509: [CodeChef] COUNTARI的更多相关文章
- BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】
题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...
- CodeChef - COUNTARI Arithmetic Progressions (FFT)
题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...
- BZOJ 3509 [CodeChef] COUNTARI ——分块 FFT
分块大法好. 块内暴力,块外FFT. 弃疗了,抄SX队长$silvernebula$的代码 #include <map> #include <cmath> #include & ...
- CodeChef - COUNTARI FTT+分块
Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...
- $FFT/NTT/FWT$题单&简要题解
打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...
随机推荐
- PHP开发环境和软件
1/很方便的软件XAMMP集成了PHP+MYSQL+MYPHPADMIN等等软件 2/sublime text 程序员神器,都明白的 ps.如果装了vm虚拟机,80端口有时候会被占用,进程关闭就好.
- EXTJS 4.2 资料 控件之Grid 行编辑绑定下拉框,并点一次触发一次事件
主要代码: { header: '属性值', dataIndex: 'PropertyValueName', width: 130, editor: new Ext.form.field.ComboB ...
- (转)Linux SLUB 分配器详解
原文网址:https://www.ibm.com/developerworks/cn/linux/l-cn-slub/ 多年以来,Linux 内核使用一种称为 SLAB 的内核对象缓冲区分配器.但是, ...
- hdu 4717 The Moving Points(第一个三分题)
http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...
- 安装oracle 11g详细过程仅供参考
- CQRS学习——一个例子(其六)
[先上链接:http://pan.baidu.com/s/1o62AHbc ] 多图杀猫 先用一组图看看实现的功能: 添加一个功能 假定现在要添加一个书本录入的功能,那么执行如下的操作: 1.添加Co ...
- unity 3d 获取鼠标当前坐标
获取当前鼠标position:Input.mousePosition;
- 一个只需要点 「下一步」就完成监控 Windows
Cloud Insight 此前已然支持 Linux 操作系统,支持20多中数据库中间件等组件,多种操作,多种搭配,服务器监控玩的其乐无穷啊!但想想还有许多 Windows 的小伙伴没有体验过,所以在 ...
- Notifications Nagios
Introduction I've had a lot of questions as to exactly how notifications work. This will attempt to ...
- http://blog.csdn.net/xyang81/article/details/7292380
http://blog.csdn.net/xyang81/article/details/7292380