隐马尔科夫模型及Viterbi算法的应用
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4335810.html
一个例子:
韦小宝使用骰子进行游戏,他有两种骰子一种正常的骰子,还有一种不均匀的骰子,来进行出千。
开始游戏时他有2/5的概率出千。
对于正常的骰子A,每个点出现的概率都是1/6.
对于不均匀的骰子B,5,6两种出现的概率为3/10,其余为1/10.
出千的随机规律如下图所示:
我们观测到的投掷结果为:ob={1,3,4,5,5,6,6,3,2,6}
请判断韦小宝什么时候出千了?
我们可以这样建模$x_i$表示第$i$次投掷的骰子的种类,$y_i$表示第$i$次投掷出的点数,$\lambda$表示各个概率参数。
那么第$t$次使用第$i$种骰子投掷的概率$\delta_t(i)$等于
\begin{equation} \delta_t(i)=\max_{x_1,\dots,x_{t-1}}P(x_1,\dots,x_{t-1},x_t=i,y_1,\dots,y_t|\lambda) \end{equation}
其实$\delta_{t+1}(i)$可以由$\delta_t(i)$推倒得出:
\begin{eqnarray} \delta_{t+1}(i) &=& \max_{x_1,\dots,x_{t}}P(x_1,\dots,x_{t},x_{t+1}=i,y_1,\dots,y_{t+1}|\lambda)\\ &=& \max_j \delta_t(j)\alpha_{ji}\beta_i(y_{t+1})\end{eqnarray}
其中$\alpha_{ji}$表示从第$j$个骰子转移到第$i$个骰子的概率。
$\beta_i(y_{t+1})$表示使用第i个骰子投出点$y_{t+1}$的概率。
从而可以使用上述利用动态规划算法进行逐次递推计算。
得到的结果为:
t | $y_t$ | $\delta_t(A)$ | $\Psi_t(A)$ | $\delta_t(B)$ | $\Psi_t(B)$ |
1 | 1 | 0.1 | A | 0.04 | A |
2 | 3 | 0.0133333 | A | 0.0036 | B |
3 | 4 | 0.00177778 | A | 0.000324 | B |
4 | 5 | 0.000237037 | A | 0.000106667 | A |
5 | 5 | 3.16049e-05 | A | 2.88e-05 | B |
6 | 6 | 4.21399e-06 | A | 7.776e-06 | B |
7 | 6 | 5.61866e-07 | A | 2.09952e-06 | B |
8 | 3 | 7.49154e-08 | A | 1.88957e-07 | B |
9 | 2 | 9.98872e-09 | A | 1.70061e-08 | B |
10 | 6 | 1.33183e-09 | A | 4.59165e-09 | B |
因为最后一步$\delta_t(B)$的值大于$\delta_t(A)$,所以一次使用B骰子的概率最大,从而一直向上回溯,得到的使用骰子的序列为:AAABBBBBBB
代码如下所示:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <string>
#include <iostream>
using namespace std;
double initP[] = {0.6, 0.4};//骰子A,B的初始概率
double transferMatrix[][] = {{0.8, 0.2}, {0.1, 0.9}};//骰子之间的转移概率
double EmissionP[][]={{/6.0, /6.0, /6.0, /6.0, /6.0, /6.0},//骰子A的发射概率
{0.1, 0.1, 0.1, 0.1, 0.3, 0.3}};//骰子B的发射概率
double dp[][];//dp[i][j]第i步时,使用第j个骰子的最大概率
double dpS[][];//dpS[i][j]第i步时,使用第j个骰子,得到的最大概率时,使用的骰子种类, 0->A, 1->B
int ob[] = {, , , , , , , , , };//观测点数
bool diceArray[];//预测骰子使用序列
void Viterbi()
{
memset(dp,,sizeof(dp));
memset(dpS,,sizeof(dpS));
memset(diceArray,,sizeof(diceArray));
dp[][] = initP[]* EmissionP[][ob[]-];
dp[][] = initP[]* EmissionP[][ob[]-];
for( int i = ; i < ; i++ )//投掷次数
{
for( int j = ; j < ; j++ )//当前状态
{
for( int k = ; k < ; k++ )//上一个状态
{
double tempP = dp[i-][k] * transferMatrix[k][j] * EmissionP[j][ob[i]-] ;
if( dp[i][j] < tempP )
{
dp[i][j] = tempP;
dpS[i][j] = k;
}
}
}
}
int maxState = ;
if( dpS[][] < dpS[][] )
{
maxState = ;
}
for( int i = ; i >= ; i-- )
{
diceArray[i] = maxState;
maxState = dpS[i][maxState];
}
}
int main(int argc, char *argv[])
{
Viterbi();
cout<<"每步每个状态下的概率和骰子种类:"<<endl;
for( int i = ; i < ; i++ )
{
for( int j = ; j < ; j++ )
{
cout<<dp[i][j]<<" "<<dpS[i][j]<<" ";
}
cout<<endl;
}
cout<<"预测骰子种类,0->A, 1->B : "<<endl;
for( int i = ; i < ; i++ )
{
cout<<diceArray[i]<<" ";
}
cout<<endl;
}
/* result:
每步每个状态下的概率和骰子种类:
0.1 0 0.04 0
0.0133333 0 0.0036 1
0.00177778 0 0.000324 1
0.000237037 0 0.000106667 0
3.16049e-05 0 2.88e-05 1
4.21399e-06 0 7.776e-06 1
5.61866e-07 0 2.09952e-06 1
7.49154e-08 0 1.88957e-07 1
9.98872e-09 0 1.70061e-08 1
1.33183e-09 0 4.59165e-09 1
预测骰子种类,0->A, 1->B :
0 0 0 1 1 1 1 1 1 1
*/
隐马尔科夫模型及Viterbi算法的应用的更多相关文章
- HMM:隐马尔科夫模型-前向算法
http://blog.csdn.net/pipisorry/article/details/50722376 目标-解决HMM的基本问题之一:已知HMM模型λ及观察序列O,如何计算P(O|λ)(计算 ...
- 隐马尔可夫模型及Viterbi算法
隐马尔可夫模型(HMM,hidden Markov model)是可用于标注问题的统计学模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型.HMM模型主要用于语音识别,自然语言处理,生物 ...
- HMM:隐马尔科夫模型-维特比算法
http://blog.csdn.net/pipisorry/article/details/50731584 目标-解决HMM的基本问题之二:给定观察序列O=O1,O2,-OT以及模型λ,如何选择一 ...
- 隐马尔科夫模型(HMM)的概念
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij) ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之三
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...
- 隐型马尔科夫模型(HMM)向前算法实例讲解(暴力求解+代码实现)---盒子模型
先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是 ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- 隐马尔科夫模型python实现简单拼音输入法
在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...
随机推荐
- 终端I/O之行控制函数
下列4个函数提供了终端设备的行控制能力.其中,filedes引用一个终端设备,否则出错返回,errno设置为ENOTTY. #include <termios.h> int tcdrain ...
- easyui datagrid 列拖拽2
1.拖动前 2.拖动中 3.拖动后 5.代码1 $("#corp-grid").datagrid({ title:"泥头车企业管理", toolbar:&quo ...
- Android(java)学习笔记68:同步代码块 和 同步方法 的应用
1. 同步代码块 和 同步方法 代码示例: (1)目标类,如下: package cn.himi.text; public class SellTicket implements Runnable { ...
- 沈逸老师PHP魔鬼特训笔记(9)--进化
回到第一课,我们学过PHP母体,了解过解析PHP程序.PHP其实内置了一个web服务器,专门给我们开发测试使用,那么接下来我们要完成的是:生成后创建一个web 服务,在浏览器中可以访问. PHP的母体 ...
- 【Android 界面效果14】RelativeLayout里常用的位置属性
------- 源自梦想.永远是你IT事业的好友.只是勇敢地说出我学到! ---------- android:layout_toLeftOf—— 该组件位于引用组件的左方 android:layou ...
- Linux中的特殊权限粘滞位(sticky bit)详解
Linux下的文件权限 在linux下每一个文件和目录都有自己的访问权限,访问权限确定了用户能否访问文件或者目录和怎样进行访问.最为我们熟知的一个文件或目录可能拥有三种权限,分别是读.写.和执行操作, ...
- (ASP.Net)MVC4怎么设置@Html.TextBoxFor样式
添加自定义样式和属性: @Html.TextBoxFor(s=>s.dd,new {@class="main",@style="width: 100px;" ...
- Kinect For Windows V2开发日志五:使用OpenCV显示彩色图像及红外图像
彩色图像 #include <iostream> #include <Kinect.h> #include <opencv2\highgui.hpp> using ...
- codeforces 675E E. Trains and Statistic(线段树+dp)
题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- sql 游标例子 根据一表的数据去筛选另一表的数据
sql 游标例子 根据一表的数据去筛选另一表的数据 DECLARE @MID nvarchar(20)DECLARE @UTime datetime DECLARE @TBL_Temp table( ...