问题起源于编程珠玑Column 12中的题目10,其描述如下:

  How could you select one of n objects at random, where you see the objects sequentially but you do not know the value of n beforehand? For concreteness, how would you read a text file, and select and print one random line, when you don’t know the number of lines in advance?

  问题定义可以简化如下:在不知道文件总行数的情况下,如何从文件中随机的抽取一行?

  首先想到的是我们做过类似的题目吗?当然,在知道文件行数的情况下,我们可以很容易的用C运行库的rand函数随机的获得一个行数,从而随机的取出一行,但是,当前的情况是不知道行数,这样如何求呢?我们需要一个概念来帮助我们做出猜想,来使得对每一行取出的概率相等,也即随机。这个概念即蓄水池抽样(Reservoir Sampling)

  有了这个概念,我们便有了这样一个解决方案:如果要选择一行数,定义取出的行号为choice,第一次直接以第一行作为取出行 choice ,而后第二次以二分之一概率决定是否用第二行替换 choice ,第三次以三分之一的概率决定是否以第三行替换 choice ……,以此类推,可用伪代码描述如下:

i = 0

while more input lines

with probability 1.0/++i

choice = this input line

print choice

  这种方法的巧妙之处在于成功的构造出了一种方式使得最后可以证明对每一行的取出概率都为1/n(其中n为当前扫描到的文件行数),换句话说对每一行取出的概率均相等,也即完成了随机的选取

如果一行要被选中,则需要把它选中的同时还不会被替换出去

  下面是只选择一行的情况,要保证每次选择一行都是等概率的出现。证明如下:

  回顾这个问题,我们可以对其进行扩展,即如何从未知或者很大样本空间随机地取k个数?

  类比下即可得到答案,即先把前k个数放入蓄水池,对第k+1,我们以k/(k+1)概率决定是否要把它换入蓄水池,换入时随机的选取一个作为替换项,这样一直做下去,对于任意的样本空间n,对每个数的选取概率都为k/n。也就是说对每个数选取概率相等。

  伪代码:

Init : a reservoir with the size: k

for i= k+1 to N

M=random(1, i);

if( M < k)

SWAP the Mth value and ith value

end for

  证明如下:

  

  蓄水池抽样问题是一类问题,在这里总结一下,并由衷的感叹这种方法之巧妙,不过对于这种思想产生的源头还是发觉不够,如果能够知道为什么以及怎么样想到这个解决方法的,定会更加有意义。

Reservoir Sampling - 蓄水池抽样的更多相关文章

  1. Reservoir Sampling - 蓄水池抽样问题

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  2. Reservoir Sampling - 蓄水池抽样算法&&及相关等概率问题

    蓄水池抽样——<编程珠玑>读书笔记 382. Linked List Random Node 398. Random Pick Index 从n个数中随机选取m个 等概率随机函数面试题总结 ...

  3. Reservoir Sampling 蓄水池抽样算法,经典抽样

    随机读取数据,如何保证真随机是不可能的,因为计算机的随机函数是伪随机的. 但是在不考虑计算机随机函数的情况下,如何保证数据的随机采样呢? 1.系统提供的shuffle函数 C++/Java都提供有sh ...

  4. Reservoir Sampling 蓄水池采样算法

    https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...

  5. leetcode398 and leetcode 382 蓄水池抽样算法

    382. 链表随机节点 给定一个单链表,随机选择链表的一个节点,并返回相应的节点值.保证每个节点被选的概率一样. 进阶:如果链表十分大且长度未知,如何解决这个问题?你能否使用常数级空间复杂度实现? 示 ...

  6. 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)

    蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...

  7. 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)

    问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...

  8. 蓄水池抽样算法 Reservoir Sampling

    2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...

  9. Spark MLlib之水塘抽样算法(Reservoir Sampling)

    1.理解 问题定义可以简化如下:在不知道文件总行数的情况下,如何从文件中随机的抽取一行? 首先想到的是我们做过类似的题目吗?当然,在知道文件行数的情况下,我们可以很容易的用C运行库的rand函数随机的 ...

随机推荐

  1. [转]一些实用的图表Chart制作工具

    最近工作过程中需要用到前端一些JS框架,看到一篇博文就转过来备份使用,后续会再完善一些材料.   Flot   Flot一个纯javascript绘画库,基于jQuery开发.它能够在客户端根据任何数 ...

  2. FlatBuffers与protobuf性能比较

    FlatBuffers发布时,顺便也公布了它的性能数据,具体数据请见Benchmark. 它的测试用例由以下数据构成"a set of about 10 objects containing ...

  3. java 编写hadoop程序中使用第三方libxx.so库

    在使用java编写hadoop处理程序时遇到了,java使用依赖的第三方libxx.so库的情况,找到了一种可行的方法,记录一下,希望对别人也有帮助: 加入需要使用的lib库为libxxx.so 1. ...

  4. 麒麟OS剽窃

    今年对于我们的IT行业来说可以算是耻辱的一年. 首先是“汉芯丑闻”,上海交大研制了一个所谓的国内第一个完全拥有自主知识产 权的DSP芯片(数字信号微处理器)——“汉芯”,研制人陈进教授以此领取政府一亿 ...

  5. c++builder XE8 线程 Thread

    thread Thread  c++builder XE8 / RAD 10 Settle delphi TThread.CreateAnonymousThread(MyMethod).Start; ...

  6. UVALive 3959 Rectangular Polygons (排序贪心)

    Rectangular Polygons 题目链接: http://acm.hust.edu.cn/vjudge/contest/129733#problem/G Description In thi ...

  7. Skeletal Animation

    [Skeletal Animation] Skeletal animation is the use of “bones” to animate a model. The movement of bo ...

  8. vim中大小写转化

    @(编程) gu或者gU 形象一点的解释就是小u意味着转为小写:大U意味着转为大写. 整篇文章大写转化为小写 打开文件后,无须进入命令行模式.键入: ggguG 解释一下: ggguG分作三段gg g ...

  9. unigui MessageDlg方法调用例子

    procedure TfrmEmployee.btnDeleteClick(Sender: TObject);var aBool: Boolean;begin inherited; MessageDl ...

  10. iOS开发-HTTP请求

    什么是URL?URL就是资源的地址.位置,互联网上的每个资源都有一个唯一的URLURL的基本格式: URL中常见的协议 (1)HTTP 超文本传输协议,访问的是远程的网络资源,格式是http:// h ...