题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423

Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
 
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
 
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
 
Sample Input
1

5
1 4 2 5 -12
4
-12 1 2 4

 
Sample Output
2
 题目大意是给定两个数字串seq1、seq2,求出它们最长公共递增子序列的长度。
状态dp[j]表示seq1中从1到n与seq2中从1到j并以seq2[j]为结尾的最长公共上升子序列的长度。
状态转移方程:dp[j] = dp[k] + 1, if seq1[i] = seq2[j], 1 <= k < j.

#include <stdio.h>
#include <string.h> #define MAX 501 int T;
int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX]; int LCIS(){
int i, j;
int Max;
memset(dp, 0, sizeof(dp));
for (i = 1; i <= len1; ++i){
Max = 0;
for (j = 1; j <= len2; ++j){
if (seq1[i] > seq2[j] && Max < dp[j])
Max = dp[j];
if (seq1[i] == seq2[j])
dp[j] = Max + 1;
}
}
Max = 0;
for (i = 1; i <= len2; ++i){
if (Max < dp[i])
Max = dp[i];
}
return Max;
} int main(void){
int i;
scanf("%d", &T);
while (T-- != 0){
scanf("%d", &len1);
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]);
printf("%d\n", LCIS());
if (T)
putchar('\n');
} return 0;
}

HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章

  1. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1423 思路分析:[问题定义]给定两个序列A[0, 1,..., m]和B[0, 1, ..., n], ...

  3. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  4. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  5. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  6. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  8. POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...

  9. HDU 1423 Greatest Common Increasing Subsequence(LCIS)

    Greatest Common Increasing Subsequenc Problem Description This is a problem from ZOJ 2432.To make it ...

随机推荐

  1. (转)java读取数据库表信息,子段

    import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sq ...

  2. MySQL订单分库分表多维度查询

    转自:http://blog.itpub.net/29254281/viewspace-2086198/ MySQL订单分库分表多维度查询  MySQL分库分表,一般只能按照一个维度进行查询. 以订单 ...

  3. zxing 生成二维码

    一.zxing介绍 zxing是google提供生成.解析一维码.二维码的开源库. 二.使用 2.1 maven pom 配置 <dependency> <groupId>co ...

  4. 教你50招提升ASP.NET性能(二):移除不用的视图引擎

    (2)Remove unused View Engines 招数2: 移除不用的视图引擎 If you're an ASP.NET MVC developer, you might not know ...

  5. MFC 学习 之 菜单栏的添加

    运行环境:vc++ 6.0    win81.通过资源 添加一组  菜单栏  如下: 2.在OnInitDialog()中添加如下代码: // Add "About..." men ...

  6. Chart控件的多种使用方法

    花了近一周时间专门研究.net 3.5平台提供的Chart控件的使用方法,感觉该控件的功能很强大,做出的图表效果也很美观,使用方法也并不复杂.如今先讲下Chart控件的部署及一些基本使用方法. 一.安 ...

  7. android学习日记03--常用控件button/imagebutton

    常用控件 控件是对数据和方法的封装.控件可以有自己的属性和方法.属性是控件数据的简单访问者.方法则是控件的一些简单而可见的功能.所有控件都是继承View类 介绍android原生提供几种常用的控件bu ...

  8. Struts2 中的数据传输

    1.     如何将参数从界面传递到Action? 你可以把Struts2中的Action看做是Struts1的Action+ActionForm,即只需在Action中定义相关的属性(要有gette ...

  9. STL——内存基本处理工具

    STL定义有五个全局函数,作用于未初始化空间上,这样的功能对于容器的实现很有帮助.前两个函数是用于构造的construct()和用于析构的destroy(),另三个函数是uninitialized_c ...

  10. How-to Dump Keys from Memcache--reference

    Submitted by Lars Windolf on 19. October 2012 - 21:53 http://lzone.de/dump%20memcache%20keys You spe ...