The Battle of Guandu

Time Limit: 1 Sec

Memory Limit: 256 MB

题目连接

Description

In the year of 200, two generals whose names are Cao Cao and Shao Yuan are fighting in Guandu. The battle of Guandu was a great battle and the two armies were fighting at M different battlefields whose numbers were 1 to M. There were also N villages nearby numbered from 1 to N. Cao Cao could train some warriors from those villages to strengthen his military. For village i, Cao Cao could only call for some number of warriors join the battlefield xi. However, Shao Yuan's power was extremely strong at that time. So in order to protect themselves, village i would also send equal number of warriors to battlefield yi and join the Yuan Shao's Army. If Cao Cao had called for one warrior from village i, he would have to pay ci units of money for the village. There was no need for Cao Cao to pay for the warriors who would join Shao Yuan's army. At the beginning, there were no warriors of both sides in every battlefield.

As one of greatest strategist at that time, Cao Cao was considering how to beat Shao Yuan. As we can image, the battlefields would have different level of importance wi. Some of the battlefields with wi=2 were very important, so Cao Cao had to guarantee that in these battlefields, the number of his warriors was greater than Shao Yuan's. And some of the battlefields with wi=1 were not as important as before, so Cao Cao had to make sure that the number of his warriors was greater or equal to Shao Yuan's. The other battlefields with wi=0 had no importance, so there were no restriction about the number of warriors in those battlefields. Now, given such conditions, could you help Cao Cao find the least number of money he had to pay to win the battlefield?

Input

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the least amount of money that Cao Cao had to pay for all the warriors to win the battle. If he couldn't win, y=−1.

Output

For each test case, output
one line containing Case #x:, where x is the test case number (starting
from 1). Then output 4 lines with 4 characters each. indicate the
recovered board.

Sample Input

2
2 3
2 3
1 1
1 1
0 1 2
1 1
1
1
1
2

Sample Output

Case #1: 1
Case #2: -1

HINT

题意

在一场战争中,有m(<=100000)个战场和n(<=100000)个村 庄,每个战场有一个重要度,重要度为0表示在这个战场己方输赢无所谓,重要度为1表示己方不能输,重要度为2表示己方必须胜出,己方获得战争的最终胜利当 且仅当己方在每个战场的战果均不违背其重要度,每个战场输赢的判据只有人数,人多的一方胜出,若两方人数相同则打平,对于第i个村庄,每花费c[i]的代 价能够征用一个人派到己方x[i]战场,同时有一个人会跑到敌方y[i]战场,问己方能否获得战争的最终胜利,若能,求出最小代价。

题解:

建图跑spfa就好,如果你考虑每个战场我方人数-敌方人数的数量的话,整个战场的人数实际上是守恒的。你可以花费c[i]代价,使得x[i]加一个人,y[i]减一个人。那么我们就建边跑最短路就好啦,让不重要的战场当成源点,重要的战场当成你要求的最短路就好了

d[i]表示从不重要战场拉一个人到i战场需要的最小代价,只要拉一个人就会胜利

代码:

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<queue>
#include<vector>
using namespace std;
#define maxn 100005
long long inf = 999999999999999LL;
int x[maxn];
int y[maxn];
long long c[maxn];
int p[maxn];
int vis[maxn];
long long d[maxn];
vector<pair<int,long long> >G[maxn];
int main()
{
int t;scanf("%d",&t);
for(int cas = ;cas <= t;cas++)
{
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
G[i].clear();
for(int i=;i<=n;i++)
scanf("%d",&x[i]);
for(int i=;i<=n;i++)
scanf("%d",&y[i]);
for(int i=;i<=n;i++)
scanf("%lld",&c[i]);
for(int i=;i<=m;i++)
scanf("%d",&p[i]); for(int i=;i<=n;i++)
{
if(p[x[i]]==)continue;
G[y[i]].push_back(make_pair(x[i],c[i]));
} queue<int> Q;
for(int i=;i<=m;i++)
{
if(p[i]==)
{
d[i]=;
vis[i]=;
Q.push(i);
}
else
{
d[i]=inf;
vis[i]=;
}
} while(!Q.empty())
{
int now = Q.front();
Q.pop();
vis[now]=;
for(int i=;i<G[now].size();i++)
{
int v = G[now][i].first;
if(d[v]>G[now][i].second + d[now])
{
d[v] = G[now][i].second + d[now];
if(vis[v])continue;
Q.push(v);
vis[v]=;
}
}
} long long ans = ;
int flag = ;
for(int i=;i<=m;i++)
{
if(p[i]==)
{
if(d[i]==inf)
{
flag = ;
break;
}
ans += d[i];
}
}
if(flag)
printf("Case #%d: -1\n",cas);
else
printf("Case #%d: %lld\n",cas,ans);
}
}

2015南阳CCPC F - The Battle of Guandu 多源多汇最短路的更多相关文章

  1. 2015南阳CCPC C - The Battle of Chibi DP

    C - The Battle of Chibi Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description Cao Cao made up a ...

  2. 2015南阳CCPC C - The Battle of Chibi DP树状数组优化

    C - The Battle of Chibi Description Cao Cao made up a big army and was going to invade the whole Sou ...

  3. 2015 南阳ccpc The Battle of Chibi (uestc 1217)

    题意:给定一个序列,找出长度为m的严格递增序列的个数. 思路:用dp[i][j]表示长度为i的序列以下标j结尾的总个数.三层for循环肯定超时,首先离散化,离散化之后就可以用树状数组来优化,快速查找下 ...

  4. 2015南阳CCPC H - Sudoku 数独

    H - Sudoku Description Yi Sima was one of the best counselors of Cao Cao. He likes to play a funny g ...

  5. 2015南阳CCPC G - Ancient Go dfs

    G - Ancient Go Description Yu Zhou likes to play Go with Su Lu. From the historical research, we fou ...

  6. 2015南阳CCPC D - Pick The Sticks 背包DP.

    D - Pick The Sticks Description The story happened long long ago. One day, Cao Cao made a special or ...

  7. 2015南阳CCPC A - Secrete Master Plan A.

    D. Duff in Beach Description Master Mind KongMing gave Fei Zhang a secrete master plan stashed in a ...

  8. 「2015南阳CCPC D」金砖 解题报告

    金砖 Problem 有一个长度为L的板凳,可以放一排金砖,金砖不能重叠.特别的,摆放的金砖可以超出板凳,前提是必须保证该金砖不会掉下去,即该金砖的重心必须在板凳上. 每块金砖都一个长度和价值,且金砖 ...

  9. 2015南阳CCPC E - Ba Gua Zhen 高斯消元 xor最大

    Ba Gua Zhen Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description During the Three-Kingdom perio ...

随机推荐

  1. Android Message和obtainMessage的区别

    类概述 定义一个包含任意类型的描述数据对象,此对象可以发送给Handler.对象包含两个额外的int字段和一个额外的对象字段,这样可以使得在很多情况下不用做分配工作. 尽管Message的构造器是公开 ...

  2. Java与WCF交互(一):Java客户端调用WCF服务

    最近开始了解WCF,写了个最简单的Helloworld,想通过java客户端实现通信.没想到以我的基础,居然花了整整两天(当然是工作以外的时间,呵呵),整个过程大费周折,特写下此文,以供有需要的朋友参 ...

  3. 【Android】以SimpleAdapter做适配器的ListView和GridView

    SimpleAdapter介绍 SimpleAdapter是一个简单的适配器,可以将静态数据映射到XML文件中定义好的视图. 构造函数 public SimpleAdapter (Context co ...

  4. Android Dialog用法

    摘要: 创建对话框 一个对话框一般是一个出现在当前Activity之上的一个小窗口. 处于下面的Activity失去焦点, 对话框接受所有的用户交互. 对话框一般用于提示信息和与当前应用程序直接相关的 ...

  5. Tour

    题意: 给n个点的坐标,求形成的最短的闭合回路. 分析: 经典问题,dp[i][j]表示有1-i点再由j回到1点的最短距离,i点有两种情况,在去的路径上 dp[i][j]=min(dp[i][j],d ...

  6. ASP.NET导出EXCEL类

    最新ASP.NET导出EXCEL类 说明:可以导出ASP.NET页面和DATAGRID(WebControl)数据,可以导出表单头 using System;using System.Data;usi ...

  7. (转载)OC学习篇之---类的三大特性:封装,继承,多态

    之前的一片文章介绍了OC中类的初始化方法和点语法的使用,今天来继续学习OC中的类的三大特性,我们在学习Java的时候都知道,类有三大特性:继承,封装,多态,这个也是介绍类的时候,必须提到的话题,那么今 ...

  8. <Chapter 2>2-1-1.安装Python SDK

    App Engine包含两个Python运行时环境:一个基于Python2.5的传统环境,以及一个运行Python2.7的新环境.这个新环境不仅仅是有一个轻微的新版本的Python解释器.主要是,这个 ...

  9. 多线程之 CountDownLatch

    CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. CountDownLatch如其所写,是一个倒计数的锁存器,当计数减至0时触发特定 ...

  10. SSH原理与运用一:远程登录(转)

    原文:http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html 作者: 阮一峰 SSH是每一台Linux电脑的标准配置. 随着Linux ...