课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

import numpy as np
A=np.random.randn(4, 3)
B=np.sum(A, axis=1, keepdims=True) # axis=1时,按照行计算; axis=0时,按照列计算
print("A="+str(A))
print("B="+str(B)) result:
A=[[-0.02149271 -1.0911196 -0.63240592]
[-0.11458854 -0.18210595 0.82210656]
[ 0.39105364 -0.97201463 -0.71820102]
[ 0.30185741 -0.50767254 -0.73277816]]
B=[[-1.74501822]
[ 0.52541207]
[-1.29916201]
[-0.93859329]]
-----------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------
答案仅供参考
课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions的更多相关文章
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[
- 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)
========================================================================================== 最近一直在看Dee ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题
1.What does the analogy “AI is the new electricity” refer to? (B) A. Through the “smart grid”, AI i ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)
Please note that when you are working on the programming exercise you will find comments that say &q ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
随机推荐
- Tensflow预测股票实例
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf #———— ...
- ArcGIS的地理坐标系与大地坐标系
一直以来,总有很多朋友针对地理坐标系.大地坐标系这两个概念吃不透.近日,在网上看到一篇文章介绍它们,非常喜欢.所以在此转发一下,希望能够对制图的朋友们有所帮助. 地理坐标:为球面坐标. 参考平面地是 ...
- Oracle中B-TREE索引的深入理解(转载)
索引概述 索引与表一样,也属于段(segment)的一种.里面存放了用户的数据,跟表一样需要占用磁盘空间.只不过,在索引里的数据存放形式与表里的数据存放形式非常的不一样.在理解索引时,可以想象一本书, ...
- (最短路)Silver Cow Party --POJ--3268
题目链接: http://poj.org/problem?id=3268 题意: 先求出所有牛到x的最短路,再求出x到所有牛的最短路,两者相加取最大值(单向图)(可以用迪杰斯特拉,SPFA) 迪杰斯特 ...
- java基础-day26
第03天 java基础加强 今日内容介绍 u BeanUtils概述及使用 u XML简介及约束 u XML解析 第1章 XML简介 1.1 XML基本语法 1.1.1 XML概述 XML全称为 ...
- spring启动component-scan类扫描加载,以及@Resource,postConstruct等等注解的解析生效源码
spring里IOC的原理就不详细写了, 如果想要搞清楚自动扫描组件是如何实现的,还有@Resouce @PostConstruct等注解的工作原理,最好可以先搞清楚整个IOC容器的运作原理再来分析这 ...
- springJDBC和SpringJDBCTemplate解决方案探究
先来看一个纯JDBC的例子,体会一下springJDBC和SpringJDBCTemplate两者的区别 一个Customer类 package com.mkyong.customer.model; ...
- 微擎 人人商城 merchant.php源码
<?php define('IN_SYS', true); require '../framework/bootstrap.inc.php'; load()->web('common'); ...
- Kali Linux渗透测试实战 1.1 Kali Linux简介
1.1 Kali Linux简介 如果您之前使用过或者了解BackTrack系列Linux的话,那么我只需要简单的说,Kali是BackTrack的升级换代产品,从Kali开始,BackTrack将成 ...
- C# winfrom 写的一个搜索助手,可以按照标题和内容搜索,支持doc,xls,ppt,pdf,txt等格式的文件搜索
C# winfrom 写的一个搜索助手,可以按照标题和内容搜索,指定目录后,遍历搜索文件和子目,现在只写了支持.DOC.DOCX.XLS.XLSX.PPT.PPTX.PDF.HTML.HTM.TXT等 ...