1、以下哪一项是正确的?(检查所有适用的) (A,D,F,G)
A.  a[2] 表示第二层的激活函数值向量。
B. X 是一个矩阵, 其中每一行都是一个训练示例。
C. a[2] (12) 表示第二训练样本在第十二层的激活函数值向量。
D. X 是一个矩阵, 其中每一列都是一个训练样本。
E. a4 [2] 是第二层的第4个训练样本的激活函数输出值
F. a[2] (12) 表示第十二训练样本在第二层激活函数值向量。
G. a4[2]  是第二层第四个神经元的激活函数输出值
-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

import numpy as np
A=np.random.randn(4, 3)
B=np.sum(A, axis=1, keepdims=True) # axis=1时,按照行计算; axis=0时,按照列计算
print("A="+str(A))
print("B="+str(B)) result:
A=[[-0.02149271 -1.0911196 -0.63240592]
[-0.11458854 -0.18210595 0.82210656]
[ 0.39105364 -0.97201463 -0.71820102]
[ 0.30185741 -0.50767254 -0.73277816]]
B=[[-1.74501822]
[ 0.52541207]
[-1.29916201]
[-0.93859329]]

-----------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

答案仅供参考

课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions的更多相关文章

  1. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记

    第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[

  2. 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)

    ========================================================================================== 最近一直在看Dee ...

  3. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset

    Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...

  4. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题

    1.What does the analogy “AI is the new electricity” refer to?  (B) A. Through the “smart grid”, AI i ...

  5. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题

    Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...

  6. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)

    Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...

  7. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标

    1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...

  8. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标

    1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...

  9. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)

    Please note that when you are working on the programming exercise you will find comments that say &q ...

  10. 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)

    --------------------------------------------------中文翻译---------------------------------------------- ...

随机推荐

  1. screen对象和history对象

    history对象保存着用户上网的历史记录,从窗口被打开的那一刻开始算起 使用go()方法可以在用户的历史记录中任意跳转 history.go(-1);//后退一页 history.go(1);//前 ...

  2. Java潜在的坑持续总结

    1.Java里如果有if (foo == 0),如果foo是null这里居然是会抛NPE异常而不是返回false: 2.Java里整形数值不能用==来比较,因为只有区间是[-128,127]的才能这么 ...

  3. nginx location配置和rewrite写法

    location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # 因为所有的地址都以 / 开头,所以这条规则将匹配 ...

  4. laravel 5.1 使用Eloquent ORM 操作实例

    Laravel 的 Eloquent ORM 提供了更优雅的ActiveRecord 实现来和数据库的互动. 每个数据库表对应一个模型文件. 数据库配置 .env文件(也可以直接修改config/da ...

  5. python.csv 按行按列读取

    参考:https://blog.csdn.net/ly_ysys629/article/details/55107237 # header=0,表示文件第0行为列索引 # index_col=0,表示 ...

  6. Edifact 95B报文解读

    PART 1 INTRODUCTION D100_D.95B PART 2 UNIFORM RULES OF CONDUCT FOR INTERCHANGE PART2_D.ZIP(1) OF TRA ...

  7. day21(Listener监听器)

    监听器只要分为监听web对象创建与销毁,监听属性变化,感知监听器. 1.监听web对象的创建与销毁 servletContextListener   监听ServletContext对象的创建和销毁 ...

  8. POJ2270&&Hdu1808 Halloween treats 2017-06-29 14:29 40人阅读 评论(0) 收藏

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8565   Accepted: 3111 ...

  9. hdu 2642 Stars 【二维树状数组】

    题目 题目大意:Yifenfei是一个浪漫的人,他喜欢数天上的星星.为了使问题变得更容易,我们假设天空是一个二维平面,上面的星星有时会亮,有时会发暗.最开始,没有明亮的星星在天空中,然后将给出一些信息 ...

  10. python_运算符与表达式

    运算符与表达式 python运算符 运算符 功能说明 + 算术加法,列表.元组.字符串合并与连接,正号 - 算术减法,集合差集,相反数 * 算术乘法,序列重复 / 真除法 // 求整商,但如果操作数中 ...