课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions


-----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------
import numpy as np
A=np.random.randn(4, 3)
B=np.sum(A, axis=1, keepdims=True) # axis=1时,按照行计算; axis=0时,按照列计算
print("A="+str(A))
print("B="+str(B)) result:
A=[[-0.02149271 -1.0911196 -0.63240592]
[-0.11458854 -0.18210595 0.82210656]
[ 0.39105364 -0.97201463 -0.71820102]
[ 0.30185741 -0.50767254 -0.73277816]]
B=[[-1.74501822]
[ 0.52541207]
[-1.29916201]
[-0.93859329]]
-----------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------
答案仅供参考
课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions的更多相关文章
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[
- 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)
========================================================================================== 最近一直在看Dee ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题
1.What does the analogy “AI is the new electricity” refer to? (B) A. Through the “smart grid”, AI i ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)
Please note that when you are working on the programming exercise you will find comments that say &q ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
随机推荐
- ZOJ 3156 Taxi (二分 + 二分匹配)
题意:给定 n 个人坐标, m 辆车的坐标,还有人的速度,要求每个人要进一辆不同的车,问你所有都进车的最短时间是多少. 析:首先二分时间 mid,很明显就是最后那个人进车的时间,然后如果把第 i 个人 ...
- 强大的DataGrid组件[1]
说明:DataGrid组件是Silverlight数据组件中最为常用并且是功能最为强大的数据组件.因此,对开发者而言,深入了解其特性是十分有必要的.本文先介绍该组件的基本特性,接着通过几个简单实例来说 ...
- 延时、输入输出接口P0~P3
1.寄存器 为了知道延时程序是如何工作的,我们必需首先了解延时程序中出现的一些符号,就从R1开始,R1被称之为工作寄存器.什么是工作寄存器呢?让我们从现实生活中来找找答案.如果出一道数学题:123+5 ...
- XCode中安装cocoapods步骤
Ruby是一种功能强大的面向对象的脚本语言 Gem是一个管理Ruby库和程序的标准包,它通过Ruby Gem(如 http://rubygems.org/ )源来查找.安装.升级和卸载软件包,非常的便 ...
- OpenCV人脸特效制作
https://blog.csdn.net/zxc024000/article/details/50456917 https://blog.csdn.net/huanghuangjin/article ...
- Java理论学时第二节。课后作业。
枚举不属于原始数据类型,它的每个具体值都引用一个特定的对象,相同的值则引用同一个对象. 可以使用“==”和equals()方法直接比对枚举变量的值,换句话说,对于枚举类型的变量,“==”和equals ...
- vmtools是灰色不可用的
- 软件测试实践平台(Mooctest)FAQ
0. 背景 我们在<软件测试技术>课程使用 MOOCTEST (mooctest.net) 作为课程的实践教学平台. 在教学过程中学生们遇到了一些问题,本文将一一总结. 注意:本文在解决问 ...
- 使用PerfView监测.NET程序性能(三):分组
在上一篇博客中,我们通过Perfview帮助文件中自带的代码来简单使用了Perfview,了解了基本操作.现在来看看Perfview中的分组操作(Grouping).分组功能都旨将记录到的各种函数调用 ...
- Android 四大组件之“ BroadcastReceiver ”
前言 Android四大组件重要性已经不言而喻了,今天谈谈的是Android中的广播机制.在我们上学的时候,每个班级的教室里都会装有一个喇叭,这些喇叭都是接入到学校的广播室的,一旦有什么重要的通知,就 ...