课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

import numpy as np
A=np.random.randn(4, 3)
B=np.sum(A, axis=1, keepdims=True) # axis=1时,按照行计算; axis=0时,按照列计算
print("A="+str(A))
print("B="+str(B)) result:
A=[[-0.02149271 -1.0911196 -0.63240592]
[-0.11458854 -0.18210595 0.82210656]
[ 0.39105364 -0.97201463 -0.71820102]
[ 0.30185741 -0.50767254 -0.73277816]]
B=[[-1.74501822]
[ 0.52541207]
[-1.29916201]
[-0.93859329]]
-----------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------
答案仅供参考
课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions的更多相关文章
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[
- 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)
========================================================================================== 最近一直在看Dee ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题
1.What does the analogy “AI is the new electricity” refer to? (B) A. Through the “smart grid”, AI i ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)
Please note that when you are working on the programming exercise you will find comments that say &q ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
随机推荐
- screen对象和history对象
history对象保存着用户上网的历史记录,从窗口被打开的那一刻开始算起 使用go()方法可以在用户的历史记录中任意跳转 history.go(-1);//后退一页 history.go(1);//前 ...
- Java潜在的坑持续总结
1.Java里如果有if (foo == 0),如果foo是null这里居然是会抛NPE异常而不是返回false: 2.Java里整形数值不能用==来比较,因为只有区间是[-128,127]的才能这么 ...
- nginx location配置和rewrite写法
location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # 因为所有的地址都以 / 开头,所以这条规则将匹配 ...
- laravel 5.1 使用Eloquent ORM 操作实例
Laravel 的 Eloquent ORM 提供了更优雅的ActiveRecord 实现来和数据库的互动. 每个数据库表对应一个模型文件. 数据库配置 .env文件(也可以直接修改config/da ...
- python.csv 按行按列读取
参考:https://blog.csdn.net/ly_ysys629/article/details/55107237 # header=0,表示文件第0行为列索引 # index_col=0,表示 ...
- Edifact 95B报文解读
PART 1 INTRODUCTION D100_D.95B PART 2 UNIFORM RULES OF CONDUCT FOR INTERCHANGE PART2_D.ZIP(1) OF TRA ...
- day21(Listener监听器)
监听器只要分为监听web对象创建与销毁,监听属性变化,感知监听器. 1.监听web对象的创建与销毁 servletContextListener 监听ServletContext对象的创建和销毁 ...
- POJ2270&&Hdu1808 Halloween treats 2017-06-29 14:29 40人阅读 评论(0) 收藏
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8565 Accepted: 3111 ...
- hdu 2642 Stars 【二维树状数组】
题目 题目大意:Yifenfei是一个浪漫的人,他喜欢数天上的星星.为了使问题变得更容易,我们假设天空是一个二维平面,上面的星星有时会亮,有时会发暗.最开始,没有明亮的星星在天空中,然后将给出一些信息 ...
- python_运算符与表达式
运算符与表达式 python运算符 运算符 功能说明 + 算术加法,列表.元组.字符串合并与连接,正号 - 算术减法,集合差集,相反数 * 算术乘法,序列重复 / 真除法 // 求整商,但如果操作数中 ...