bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194
相乘两项的下标 的 差相同
那么把某一个反过来就是卷积形式
fft优化
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; const int N=(<<)+; const double pi=acos(-); int r[N]; struct Complex
{
double a,b; Complex(double x_=,double y_=):a(x_),b(y_) {} Complex operator + (Complex p)
{
Complex c;
c.a=a+p.a;
c.b=b+p.b;
return c;
} Complex operator - (Complex p)
{
Complex c;
c.a=a-p.a;
c.b=b-p.b;
return c;
} Complex operator * (Complex p)
{
Complex c;
c.a=a*p.a-b*p.b;
c.b=a*p.b+b*p.a;
return c;
}
}; typedef Complex E;
E A[N],B[N],C[N]; int n; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void fft(E *a,int f)
{
for(int i=;i<n;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=;i<n;i<<=)
{
E wn(cos(pi/i),f*sin(pi/i));
for(int p=i<<,j=;j<n;j+=p)
{
E w(,);
for(int k=;k<i;++k,w=w*wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
} int main()
{
int cnt;
read(cnt);
int x,y;
for(int i=;i<cnt;++i)
{
read(x); read(y);
A[cnt--i].a=x;
B[i].a=y;
}
int m=cnt+cnt-,l=;
for(n=;n<=m;n<<=) l++;
for(int i=;i<n;++i) r[i]=(r[i>>]>>)|((i&)<<l-);
fft(A,);
fft(B,);
for(int i=;i<n;++i) C[i]=A[i]*B[i];
fft(C,-);
for(int i=cnt-;i>=;--i) printf("%d\n",int(C[i].a/n+0.5));
}
bzoj千题计划256:bzoj2194: 快速傅立叶之二的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划166:bzoj2179: FFT快速傅立叶
http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划242:bzoj4034: [HAOI2015]树上操作
http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序
http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...
随机推荐
- (2)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- .NetCore启动配置 和 .NetCoreWebApi
什么是.Net Core?.Net Core是微软开发的另外一个可以跨Linux.Windows.mac等平台的.Net.Net Core相关知识看文章地步dotnet dllname.dll 运行P ...
- git笔记:通过给grunt-inline打tag看tag操作
晚上review了下grunt-inline的issues,看到有个兄弟pull request,修正了0.3.0版本的一个bug.于是就merge了下,然后发布了0.3.1版本(这里). npm p ...
- 批量备份H3C交换机路由器配置
第一种(使用ftp下载配置文件): #!/bin/bash datetime=`date +%Y%m%d` BAKTIME=`date +%Y%m%d%H%M%S` user="admin& ...
- 手机Gmail上用Exchange协议配置收发QQ邮箱
1.开启Exchange服务 2.生成授权码(登录密码) 3."服务器"填入ex.qq.com
- PAT甲题题解-1128. N Queens Puzzle (20)-做了一个假的n皇后问题
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789810.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- js生成uuid代码
function uuid() { var s = []; var hexDigits = "0123456789abcdef"; for (var i = 0; i < 3 ...
- C/C+ 感触
1. C/C++语言开发的首选利器- C++Test 以前在windows平台下的开发,使用的框架主要是MFC,以及console工程(基于win32SDK),属于纯C/C++ ...
- 第一个sprint冲刺第一阶段
会议地址:男生宿舍1栋B4014 会议内容:讨论如何完成产品 成员:李新,朱浩龙,陈俊金,叶煜稳,林德麟 困难:对于做成一个手机APP,尚未掌握:成员尚在学习中 master:陈俊金
- ElasticSearch 2 (11) - 节点调优(ElasticSearch性能)
ElasticSearch 2 (11) - 节点调优(ElasticSearch性能) 摘要 一个ElasticSearch集群需要多少个节点很难用一种明确的方式回答,但是,我们可以将问题细化成一下 ...
- Java内置锁synchronized的实现原理
简述Java中每个对象都可以用来实现一个同步的锁,这些锁被称为内置锁(Intrinsic Lock)或监视器锁(Monitor Lock). 具体表现形式如下: 1.普通同步方法,锁的是当前实例对象 ...