[BZOJ 2299][HAOI 2011]向量

Description

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

Input

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y (-2109<=a,b,x,y<=2109)

Output

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

Solution

1.考虑把八种情况合在一起,发现反向操作可以合并,那么操作也就是有四种(a,b),(-a,b),(b,a),(-b,a);

2.设四种操作进行的次数分别为x1,x2,x3,x4,那么:

对横坐标的操作为x1a-x2a+x3b-x4b,即(x1-x2)a+(x3-x4) b=x;

对纵坐标的操作为x1b+x2b+x3a+x4a,即(x1+x2)b+(x3+x4)a=y;

于是我们验证两方程是否有整数解即可。

3.裴蜀定理告诉我们:当gcd(a,b)|ans时,方程有整数解。

考虑四个系数的奇偶性,因为四个系数是四个数的组合,所以gcd应该是原来的二倍。

比如当x1-x2是奇数时,假设可行解中系数x1+x2为偶数,那就不成立了,所以我们分情况讨论之后发现,满足要求时gcd应该为原来的二倍。

Code

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std; ll g; inline ll rd(){
ll x=0;
bool f=0;
char c=getchar();
while(!isdigit(c)){
if(c=='-')f=1;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?-x:x;
} ll gcd(ll x,ll y){return y?gcd(y,x%y):x;} bool valid(ll x,ll y){return (!(x%g))&&(!(y%g));} int main(){
ll t=rd();
while(t--){
ll a=rd(),b=rd();
ll x=rd(),y=rd();
g=gcd(a,b)<<1;
printf((valid(x,y)||valid(x+a,y+b)||valid(x+b,y+a)||valid(x+a+b,y+a+b))?"Y\n":"N\n");
}
return 0;
}

[BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)的更多相关文章

  1. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  2. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  3. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  4. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  5. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...

  6. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  7. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  8. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

随机推荐

  1. Gartner研究副总裁:人工智能的五点傲慢与偏见

    对于人工智能能够为各企业机构完成哪些任务,IT与业务领导者们时常感到困惑,并深受多个人工智能错误观念的困扰.全球领先的信息技术研究和顾问公司Gartner认为,开发人工智能项目的IT与业务领导者必须分 ...

  2. 小学生都能写智能语音助手了,我这颗转战AI的心要何去何从?

    前言——我是不是老了 前天看了一个关于AI类的综艺节目我感觉整个人都不好了.这个综艺的名字叫<智造将来>上面那个小屁孩自己写了一个智能语音助手,这个小屁孩叫袁翊闳是2018年百度AI开发者 ...

  3. 20135337朱荟潼 Linux第一周学习总结——计算机是如何工作的

    朱荟潼 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课http://mooc.study.163.com/course/USTC-1000029000 1.冯诺依曼体系结 ...

  4. 毕业设计---json,Struts,ajax以及JQuery简单案例

    <!-- Struts2的xml文件配置 --><struts> <package name="default" namespace="/& ...

  5. 使用不同的namespace让不同的kafka/Storm连接同一个zookeeper

    背景介绍: 需要部署2个kafka独立环境,但是只有一个zookeeper集群. 需要部署2个独立的storm环境,但是只有一个zookeeper集群. ----------------------- ...

  6. img 分区响应图

    ---恢复内容开始--- a标签的target为_blank属性,意为跳转到新的页面. shape要和coords配合使用,shape为rect时意义为矩形.shape 为不同属性时意为不同的形态触碰 ...

  7. JS基础(四)运算符

    一.比较运算符 1.== : 判断两边值是否相等 2.>= : 判断左边的值是否大于或等于右边的值 3.<= : 判断左边边的值是否小于或等于右边的值 4.>   : 判断左边的值是 ...

  8. 暑假学习笔记(一)——初识Neo4j和APICloud入门

    暑假学习笔记(一)--初识Neo4j和APICloud入门 20180719笔记 1.Neo4j 接了学姐的系统测试报告任务,感觉工作很繁重,但是自己却每天挥霍时光.9月份就要提交系统测试报告了,但是 ...

  9. Access restriction: The type 'BASE64Decoder' is not API

    Access restriction: The type 'BASE64Decoder' is not API (restriction on required library 'C:\Program ...

  10. 基于 Redis 做分布式锁

    基于 REDIS 的 SETNX().EXPIRE() 方法做分布式锁 setnx() setnx 的含义就是 SET if Not Exists,其主要有两个参数 setnx(key, value) ...