[BZOJ 2299][HAOI 2011]向量

Description

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

Input

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y (-2109<=a,b,x,y<=2109)

Output

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

Solution

1.考虑把八种情况合在一起,发现反向操作可以合并,那么操作也就是有四种(a,b),(-a,b),(b,a),(-b,a);

2.设四种操作进行的次数分别为x1,x2,x3,x4,那么:

对横坐标的操作为x1a-x2a+x3b-x4b,即(x1-x2)a+(x3-x4) b=x;

对纵坐标的操作为x1b+x2b+x3a+x4a,即(x1+x2)b+(x3+x4)a=y;

于是我们验证两方程是否有整数解即可。

3.裴蜀定理告诉我们:当gcd(a,b)|ans时,方程有整数解。

考虑四个系数的奇偶性,因为四个系数是四个数的组合,所以gcd应该是原来的二倍。

比如当x1-x2是奇数时,假设可行解中系数x1+x2为偶数,那就不成立了,所以我们分情况讨论之后发现,满足要求时gcd应该为原来的二倍。

Code

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long ll;
using namespace std; ll g; inline ll rd(){
ll x=0;
bool f=0;
char c=getchar();
while(!isdigit(c)){
if(c=='-')f=1;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?-x:x;
} ll gcd(ll x,ll y){return y?gcd(y,x%y):x;} bool valid(ll x,ll y){return (!(x%g))&&(!(y%g));} int main(){
ll t=rd();
while(t--){
ll a=rd(),b=rd();
ll x=rd(),y=rd();
g=gcd(a,b)<<1;
printf((valid(x,y)||valid(x+a,y+b)||valid(x+b,y+a)||valid(x+a+b,y+a+b))?"Y\n":"N\n");
}
return 0;
}

[BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)的更多相关文章

  1. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  2. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  3. BZOJ 2299 向量(裴蜀定理)

    题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...

  4. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  5. bzoj 1441: Min 裴蜀定理

    题目: 给出\(n\)个数\((A_1, ... ,A_n)\)现求一组整数序列\((X_1, ... X_n)\)使得\(S=A_1*X_1+ ...+ A_n*X_n > 0\),且\(S\ ...

  6. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  7. [HAOI2011] 向量 - 裴蜀定理

    给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y) ...

  8. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  9. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

随机推荐

  1. 初次接触OSSEC

    OSSEC是一款开源的系统监控平台.它集成了HIDS(主机入侵检测).日志监控.安全事件管理(SIM).安全信息和事件管理(SIEM)于一身,结构简单.功能强大的开源解决方案. 主要优点 满足合规性 ...

  2. 开源一个最近写的spring与mongodb结合的demo(spring-mongodb-demo)

    由于工作需要,给同事们分享了一下mongodb的使用,其中主要就是做了一个spring-data+mongodb的小例子,本着分享的精神,就上传到了github.com上,有需要的同学请移步githu ...

  3. PHP密码的六种加密方式

    1. MD5加密 string md5 ( string $str [, bool $raw_output = false ] ) 参数 str  --  原始字符串. raw_output  --  ...

  4. JavaScript高级程序设计学习笔记2

    垃圾收集原理: 找出不再使用的变量,然后释放其内存. js中最常用的垃圾收集方法是标记清除,当变量进入环境时,就将变量标记为“进入环境”,当变量离开环境时,将其标记为“离开环境”,最后由垃圾收集器完成 ...

  5. 每日scrum(7)

    今天是小组用来写文稿的日子,包括软件需求分析报告,概要设计报告,详细设计报告,数据库设计报告,软件测试报告,各组员领取自己的任务然后完成~ 任务看板: 燃尽图:

  6. 作业6小学生四则运算测试APP的NABCD模型

    小学生四则运算测试NABCD模型 组员:李新,朱浩龙,叶煜稳,陈俊金,林德麟 (1)  N (Need 需求) 需求分析: 四则运算是小学生学习数学的核心和基础,必须经过大量的练习才能熟练掌握,但是一 ...

  7. A brief introduction of myself

    来到博客园的第二天.晚上天色墨蓝,余热未退,北京这里的秋风干松爽利,和小组的伙伴们吃了一顿饱饱的香锅,按照咱们国人的传统,所有的事情在饭桌上都解决了,包括队员之间相互的认识和短期任务的分配以及后期的团 ...

  8. [转帖]在VMware ESXi服务器上配置NAT上网 需要学习一下。

    http://blog.51cto.com/boytnt/1292487 在使用VMware workstation的时候,我们经常以NAT的方式配置虚拟机的网络,与桥接方式相比,这样配置可以让虚拟机 ...

  9. CentOS下安装Python3

    目录 CentOS下安装Python3 下载 解压 配置 gcc sudo权限 vim 编译 安装 添加软链接 pip安装出错,找不到SSL 安装virtualenv和virtualenvwrappe ...

  10. Mouse Hunt CodeForces - 1027D(思维 找环)

    Medicine faculty of Berland State University has just finished their admission campaign. As usual, a ...