数论/莫比乌斯反演/快速mu前缀和


  比较容易想到令f[x]表示gcd=x的方案数,令g[x]表示x|gcd的方案数。

  那么有$ g(d)=\sum_{d|n} f(n)$,根据莫比乌斯反演,有$f(d)=\sum_{d|n} g(n)*\mu (\frac{n}{d})$

  我一开始想的是算出g以后,倒序枚举 i ,然后枚举 i 的倍数,递推出所有的f[i]……

  因为g比较好算嘛……快速幂一下什么的……

  然而$10^9$直接吓傻我。

  Orz PoPoQQQ

  快速求出mu的前缀和,$10^9$也照样不虚,太神辣

 /**************************************************************
Problem: 3930
User: Tunix
Language: C++
Result: Accepted
Time:4200 ms
Memory:54024 kb
****************************************************************/ //BZOJ 3930
#include<cstdio>
#include<map>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=1e7+,P=1e9+;
const int INF=0x3f3f3f3f;
/*******************template********************/ int mu[N],prime[],tot;
bool check[N];
map<int,LL> mu_sum;
LL n,d,l,r;
void getmu(){
int n=;
mu[]=;
F(i,,n){
if (!check[i]){
mu[i]=-;
prime[++tot]=i;
}
F(j,,tot){
int k=i*prime[j];
if (k>n) break;
check[k]=;
if (i%prime[j]) mu[k]=-mu[i];
else{
mu[k]=;
break;
}
}
}
F(i,,n) mu[i]+=mu[i-];
}
LL Mu_sum(int x){
if (x<=) return mu[x];
if (mu_sum.find(x)!=mu_sum.end())
return mu_sum[x];
LL i,last,re=;
for(i=;i<=x;i=last+){
last=x/(x/i);
if (x/i-)
re-=(Mu_sum(last)-Mu_sum(i-))*(x/i-);
}
return mu_sum[x]=re;
}
LL Pow(LL a,int b){
LL r=;
for(;b;b>>=,a=a*a%P) if (b&) r=r*a%P;
return r;
}
LL solve(){
LL i,last,re=;
for(i=;i<=r;i=last+){
last=min(r/(r/i),l/i?(l/(l/i)):INF);
re+=(Mu_sum(last)-Mu_sum(i-))*Pow(r/i-l/i,n);
re%=P;
}
return (re%P+P)%P;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("3930.in","r",stdin);
freopen("3930.out","w",stdout);
#endif
n=getint(); d=getint(); l=getint(); r=getint();
l=(l-)/d; r=r/d;
getmu();
printf("%lld\n",solve());
return ;
}

  然而$H-L \leq 10^5$并没用?不是的……我们可以枚举倍数!

  Orz syk

  记f[i]为gcd恰好为$K*i$的选数方案数,那么对于每一个$i$记$L$为$\lceil \frac{a}{K*i}\rceil $,$R$为$\lfloor\frac{b}{K*i}\rfloor$ 那么他的方案数就为$f[i] = (R-L+1) ^ N - (R-L+1)-\sum_{a=1,2,\dots} f[a*i]$最后的f[1]即为答案。注意若$\lceil \frac{a}{K} \rceil == 1$ 那么全部选K也是一种方案,需要+1。

  (话说好不容易想到一次莫比乌斯反演,然而却做不出来……唉

 /**************************************************************
Problem: 3930
User: Tunix
Language: C++
Result: Accepted
Time:412 ms
Memory:1664 kb
****************************************************************/ //BZOJ 3930
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=1e5+,P=1e9+;
/*******************template********************/ int d[N],n,K,l,r,a,b;
int Pow(int a,int b){
int r=;
for(;b;b>>=,a=(LL)a*a%P) if (b&) r=(LL)r*a%P;
return r;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("3930.in","r",stdin);
freopen("3930.out","w",stdout);
#endif
n=getint(); K=getint(); a=getint(); b=getint();
l=a/K; r=b/K;
if (a%K) l++;
D(i,,){
int R=r/i,L=l/i;
if (l%i) L++;
if (l<=r){
d[i]=Pow(R-L+,n);
d[i]=(d[i]-(R-L+)+P)%P;
for(int j=i+i;j<=;j+=i) d[i]=(d[i]-d[j]+P)%P;
}
}
if (l==) d[]=(d[]+)%P;
printf("%d\n",d[]);
return ;
}

3930: [CQOI2015]选数

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 434  Solved: 222
[Submit][Status][Discuss]

Description


们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方
案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要
回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

Output

输出一个整数,为所求方案数。

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5

Source

[Submit][Status][Discuss]

【BZOJ】【3930】【CQOI2015】选数的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  3. bzoj 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  5. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  6. bzoj 3930: [CQOI2015]选数【快速幂+容斥】

    参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...

  7. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  8. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

  10. 3930: [CQOI2015]选数

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1958  Solved: 979[Submit][Status][Discuss] Descripti ...

随机推荐

  1. 通过css属性hack完成select样式美化,并兼容IE

    最近在重构时遇到了select样式问题,并且需要在不影响语义化的情况下,兼容IE8. 经过一番的百度后始终没有找到合适的纯CSS解决方案,最后换了一下思路,大胆使用了属性hack: 在chrome和F ...

  2. UE4新手编程之创建空白关卡和添加碰撞体

    让我们接着上次继续学习UE4引擎,今天我们学习下怎样创建空白的关卡以及添加碰撞物体. 一. 创建空白关卡 1) 点击文件 -> 新建关卡(或者按快捷键Ctrl+N). 2) 你可以选择Defau ...

  3. JSP的几个页面指令

    页面指令:向服务器说明页面自身的特征,以便服务器. 1,<%@page contentType="text/xml;charset=utf-8" %> 客户端---&g ...

  4. 系统的Drawable(二)-Selector

    系统的Drawable(二)-Selector Selector漫谈 Selector是定义 StateListDrawable 的标签,该Drawable代表着一个Drawable的集合,每一个Dr ...

  5. hdu 4407 容斥原理

    题意: 1 //一组数据 3 3 //数字为1-3,3次运算 2 2 3 //将2号位变成3 1 1 3 4 //计算1-3号位上与4互质的数的和 1 2 3 6 好题,需要重复练习 #include ...

  6. OpenVPN推送默认路由表

    根据官方Server配置文件:https://github.com/OpenVPN/openvpn/blob/master/sample/sample-config-files/server.conf ...

  7. HDU 3976 Electric resistance (高斯消元法)

    Electric resistance Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. 设计模式之七:模板方法模式(Template Method)

    模板方法模式: 定义了一个算法的基本操作骨架,并将算法的一些步骤延迟到子类中来实现. 模板方法模式让子类在不更改算法结构的前提下能够又一次定义算法的一些步骤. Define the skeleton ...

  9. LPC-LINK 2 LPC4337 TQFP144 IO

  10. echarts 去掉网格线

    去掉 xAxis : [ splitLine:{ show:false }], yAxis : [ splitLine:{ show:false }]