Boost.Accumulators is both a library for incremental statistical computation as well as an extensible framework for incremental calculation in general. The library deals primarily with the concept of an accumulator, which is a primitive computational entity that accepts data one sample at a time and maintains some internal state. These accumulators may offload some of their computations on other accumulators, on which they depend. Accumulators are grouped within an accumulator set. Boost.Accumulators resolves the inter-dependencies between accumulators in a set and ensures that accumulators are processed in the proper order.

The rolling mean is the mean over the last N samples. It is computed by dividing the rolling sum by the rolling count.

Lazy
or iterative calculation of the mean over the last N samples. The lazy
calculation is associated with the tag::lazy_rolling_mean feature, and
the iterative calculation (which is the default) with the
tag::immediate_rolling_mean feature. Both can be extracted using the
tag::rolling_mean() extractor.
 
把连续取得的N个采样值看成一个队列,队列的长度固定为N,
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),
把队列中的N个数据进行算术平均运算,获得新的滤波结果。

#include <iostream>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/rolling_mean.hpp>

using namespace boost::accumulators;

int main()
{
        accumulator_set<int, stats<tag::rolling_mean> > acc(tag::rolling_window::window_size = 7);

// push in some data ...
        acc(1);
        acc(2);
        acc(3);
        std::cout << "Mean: " << rolling_mean(acc) << std::endl;

acc(4);
        acc(5);
        acc(6);
        acc(7);
        std::cout << "Mean: " << rolling_mean(acc) << std::endl;

return 0;
}
输出
Mean: 2
Mean: 4

#include <iostream>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/moment.hpp>

using namespace boost::accumulators;

int main()
{
    // Define an accumulator set for calculating the mean and the
    // 2nd moment ...
    accumulator_set<double, stats<tag::mean, tag::moment<2> > > acc;

// push in some data ...
    acc(1.2);
    acc(2.3);
    acc(3.4);
    acc(4.5);

// Display the results ...
    std::cout << "Mean: " << mean(acc) << std::endl;
    std::cout << "Moment: " << moment<2>(acc) << std::endl;

return 0;
}

结果

Mean: 2.85
Moment: 9.635

----------------------

Usage of the framework follows the following pattern:

1. Users build a computational object, called an accumulator_set<>, by selecting the
       computations in which they are interested, or authoring their own computational
       primitives which fit within the framework.

2. Users push data into the accumulator_set<> object one sample at a time.
    
   3. The accumulator_set<> computes the requested quantities in the most efficient method
        possible, resolving dependencies between requested calculations, possibly caching
        intermediate results.

The
Accumulators Framework defines the utilities needed for defining
primitive computational elements, called accumulators. It also provides
the accumulator_set<> type, described above.

// In header: <boost/accumulators/framework/accumulator_set.hpp>

template<typename Sample, typename Features, typename Weight>
struct accumulator_set {
  // types
  typedef Sample sample_type; // The type of the samples that will be accumulated.
  typedef Features features_type; // An MPL sequence of the features that should be accumulated.
  typedef Weight weight_type; // The type of the weight parameter. Must be a scalar. Defaults to void.
  typedef void result_type;

// member classes/structs/unions
  template<typename Feature>
  struct apply {
  };

可见 accumulator_set 是个类模板。模板的第一个参数表示样本的类型,
use the features<> template to specify a list of features to be calculated

template <class T>
class stats
{
public:
   stats()
      : m_min(tools::max_value<T>()),
        m_max(-tools::max_value<T>()),
        m_total(0),
        m_squared_total(0),
        m_count(0)
   {}
...

stats 也是一个类模版,T = Tag::mean 是参数类型。

namespace tag
{
    struct mean
      : depends_on<count, sum>
    {
        /// INTERNAL ONLY
        ///
        typedef accumulators::impl::mean_impl<mpl::_1, sum> impl;
    };

struct immediate_mean
      : depends_on<count>
    {
        /// INTERNAL ONLY
        ///
        typedef accumulators::impl::immediate_mean_impl<mpl::_1, tag::sample> impl;
    };

由此可见 tag 是一种命名空间 mean 是一个结构体

-------------------------关于 tag::moment< para > --------------------

Header

#include <boost/accumulators/statistics/moment.hpp>

Example

accumulator_set<int, stats<tag::moment<2> > > acc1;

acc1(2); // 4
acc1(4); // 16
acc1(5); // + 25
         // = 45 / 3 = 15

BOOST_CHECK_CLOSE(15., accumulators::moment<2>(acc1), 1e-5);

-----------------------------------------------------------------
accumulator_set<int, stats<tag::moment<5> > > acc2;

acc2(2); // 32
acc2(3); // 243
acc2(4); // 1024
acc2(5); // + 3125
         // = 4424 / 4 = 1106

BOOST_CHECK_CLOSE(1106., accumulators::moment<5>(acc2), 1e-5);

可见 tag::moment< para > 是一个结构体 就是一个类模板, 模板的参数para指定了矩的类型,
para = 2 是二次矩,也就是方差。

boost的accumulator rolling_mean的使用的更多相关文章

  1. boost number handling

    Boost.Integer defines specialized for integers. 1. types for integers with number of bits #include & ...

  2. boost强分类器的实现

    boost.cpp文件下: bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator, int _numSampl ...

  3. Boost信号/槽signals2

    信号槽是Qt框架中一个重要的部分,主要用来解耦一组互相协作的类,使用起来非常方便.项目中有同事引入了第三方的信号槽机制,其实Boost本身就有信号/槽,而且Boost的模块相对来说更稳定. signa ...

  4. 玩转Windows服务系列——使用Boost.Application快速构建Windows服务

    玩转Windows服务系列——创建Windows服务一文中,介绍了如何快速使用VS构建一个Windows服务.Debug.Release版本的注册和卸载,及其原理和服务运行.停止流程浅析分别介绍了Wi ...

  5. boost::function的用法

    本片文章主要介绍boost::function的用法. boost::function 就是一个函数的包装器(function wrapper),用来定义函数对象. 1.  介绍 Boost.Func ...

  6. Boost条件变量condition_variable_any

    Boost条件变量可以用来实现线程同步,它必须与互斥量配合使用.使用条件变量实现生产者消费者的简单例子如下,需要注意的是cond_put.wait(lock)是在等待条件满足.如果条件不满足,则释放锁 ...

  7. 新手,Visual Studio 2015 配置Boost库,如何编译和选择,遇到无法打开文件“libboost_thread-vc140-mt-gd-1_63.lib“的解决办法

    1,到官网下载最新的boost,www.boost.org 这里我下载的1-63版本. 2,安装,解压后运行bootstrap.bat文件.稍等一小会就OK. 3,编译boost库.注意一定要使用VS ...

  8. boost.python笔记

    boost.python笔记 标签: boost.python,python, C++ 简介 Boost.python是什么? 它是boost库的一部分,随boost一起安装,用来实现C++和Pyth ...

  9. vs2013给项目统一配置boost库

    1.打开项目,然后点击菜单中的 视图->其他窗口->属性管理器 2. 打开属性管理器,点击项目前的箭头,展开项目,找到debug或者release下面的Microsoft.Cpp.Win3 ...

随机推荐

  1. pinyin4j 中文转拼音

  2. python学习day7 数据类型及内置方法补充

    http://www.cnblogs.com/linhaifeng/articles/7133357.html#_label4 1.列表类型 用途:记录多个值(一般存放同属性的值) 定义方法 在[]内 ...

  3. dedecms迁站

    1  后台>系统>备份数据库 2  下载“所有(强调一下是所有:包括整站程序与备份的数据)”原站的数据,整个站点 3  将下载下来的所有数据上传到新空间 4  删除install目录下的i ...

  4. Appium+python自动化2-启动百度app

    一.前言 上一章节环境已经搭建好了,接下来就是需要启动APP,如何启动app呢?首先要获取包名,然后获取launcherActivity.获取这两个关键东西的方法很多,这里就不一一多说,小伙伴们可以各 ...

  5. 微信小程序开发——开发者工具无法输入中文的处理

    问题模块 框架类型 问题类型 操作系统 工具版本 开发者工具 小程序 Bug Windows v.02.1810290 异常描述: 无法输入中文,偶现,但是概率有点高,重启,重装,更新版本等等都未解决 ...

  6. TZOJ 1210 The area(微积分)

    描述 Ignatius bought a land last week, but he didn't know the area of the land because the land is enc ...

  7. Bootstrap(9) 巨幕页头缩略图和警告框组件

    一.巨幕组件巨幕组件主要是展示网站的关键性区域.//在固定的范围内,有圆角 <div class="container"> <div class="ju ...

  8. 用Python监听鼠标和键盘事件

    PyHook是一个基于Python的“钩子”库,主要用于监听当前电脑上鼠标和键盘的事件.这个库依赖于另一个Python库PyWin32,如同名字所显示的,PyWin32只能运行在Windows平台,所 ...

  9. (九)ROS安装rviz模拟器

    一 . 什么是 rviz rviz : The ROS Visualization Tool ,即机器人操作系统3D可视化工具.它的作用就是:一个虚拟世界,用来模拟机器人在现实世界的运行效果. 简单的 ...

  10. Django中反向生成models

    我们在展示django ORM反向生成之前,我们先说一下怎么样正向生成代码. 正向生成,指的是先创建model.py文件,然后通过django内置的编译器,在数据库如mysql中创建出符合model. ...