POJ 1904 King's Quest(SCC的巧妙应用,思维题!!!,经典题)
| Time Limit: 15000MS | Memory Limit: 65536K | |
| Total Submissions: 10305 | Accepted: 3798 | |
| Case Time Limit: 2000MS | ||
Description
So the king asked his wizard to find for each of his sons the girl he liked, so that he could marry her. And the king's wizard did it -- for each son the girl that he could marry was chosen, so that he liked this girl and, of course, each beautiful girl had to marry only one of the king's sons.
However, the king looked at the list and said: "I like the list you have made, but I am not completely satisfied. For each son I would like to know all the girls that he can marry. Of course, after he marries any of those girls, for each other son you must still be able to choose the girl he likes to marry."
The problem the king wanted the wizard to solve had become too hard for him. You must save wizard's head by solving this problem.
Input
The last line of the case contains the original list the wizard had made -- N different integer numbers: for each son the number of the girl he would marry in compliance with this list. It is guaranteed that the list is correct, that is, each son likes the girl he must marry according to this list.
Output
Sample Input
4
2 1 2
2 1 2
2 2 3
2 3 4
1 2 3 4
Sample Output
2 1 2
2 1 2
1 3
1 4
Hint
国王有n个儿子,每个儿子喜欢ki个女孩,国王想让王子和他喜欢的人结婚,
就让巫师做一个列表,就是国王想知道每个王子可以和哪些女生结合且不影响其他王子也能和自己喜欢的人结婚
其实就是求王子和哪些女生结婚不影响最大匹配!!!
对每个王子喜欢的女生,王子到女孩建边
对完备匹配,女孩到王子建边
然后和王子x属于同一个SCC的且王子喜欢的女生就是王子x在不影响最大匹配的情况下,可以结婚的女生
保证完备匹配的女生y和王子x是属于同一个SCC
题目说n个王子,n个女生,保证每个王子都可以匹配到喜欢的女生
所以该图是二分图
且同一个SCC中王子和女生的数目是相同的!!
反证法:如果强连通分量1中的王子选择了强连通分量2中的妹子,
那么势必强连通分量2中的一个王子无法在自己的强连通分量中找到妹子,
那么他就会去别的强连通分量找妹子,这样一直循环下去,
我们知道最终一定是经过了强连通分量1,2,x1,x2,xn,……,1,
王子们才能都找到自己的妹子,这样这些强连通分量1,2,x1,x2,xn,……,1会构成一个强连通分量,
与题设在不同强连通分量中找妹子不符
1.对在同一个SCC里面的女生y,王子x不一定喜欢
2.输出的编号要升序排序
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x7fffffff
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 20005
int vis[max_v];
int dfn[max_v];
int low[max_v];
int color[max_v];
int stk[max_v];
vector<int> G[max_v];
int n,m;
int sig,cnt,sp; priority_queue<int,vector<int>,greater<int> > q;//优先队列 升序
void init()
{
me(vis,);
me(dfn,);
me(color,);
me(low,);
for(int i=;i<=n*;i++)
{
G[i].clear();
}
sig=;
cnt=;
sp=-;
} void tarjan(int u)
{
vis[u]=;
dfn[u]=low[u]=cnt++;
stk[++sp]=u;
for(int j=;j<G[u].size();j++)
{
int v=G[u][j];
if(vis[v]==)
tarjan(v);
if(vis[v]==)
low[u]=min(low[v],low[u]);
}
if(low[u]==dfn[u])
{
sig++;
do
{
color[stk[sp]]=sig;
vis[stk[sp]]=-;
}while(stk[sp--]!=u);
}
}
int main()
{
int x,y;
while(~scanf("%d",&n))
{
init();
for(int i=;i<=n;i++)
{
m=getval();//输入外挂
for(int j=;j<=m;j++)
{
y=getval();
y+=n;
if(count(G[i].begin(),G[i].end(),y)==)
G[i].push_back(y);
}
}
for(int i=;i<=n;i++)
{
x=getval();
x+=n;
if(count(G[x].begin(),G[x].end(),i)==)
G[x].push_back(i);
}
for(int i=;i<=n+n;i++)
{
if(vis[i]==)
tarjan(i);
}
int sum=;
for(int i=;i<=n;i++)
{
sum=;
for(int j=;j<G[i].size();j++)//只考虑王子i喜欢的女生
{
if(color[i]==color[G[i][j]])//颜色相同代表属于同一个SCC
{
sum++;
q.push(G[i][j]-n);
}
}
out(sum);
while(!q.empty())
{
printf(" ");
out(q.top());//输出外挂
q.pop();
}
printf("\n");
}
}
return ;
} /*
题目意思:
国王有n个儿子,每个儿子喜欢ki个女孩,国王想让王子和他喜欢的人结婚,
就让巫师做一个列表,就是国王想知道每个王子可以和哪些女生结合且不影响其他王子也能和自己喜欢的人结婚
其实就是求王子和哪些女生结婚不影响最大匹配!!! 做法:
对每个王子喜欢的女生,王子到女孩建边
对完备匹配,女孩到王子建边
然后和王子x属于同一个SCC的且王子喜欢的女生就是王子x在不影响最大匹配的情况下,可以结婚的女生 1.为什么对完备匹配反向建边?
保证完备匹配的女生y和王子x是属于同一个SCC 2.为什么该图是二分图?
题目说n个王子,n个女生,保证每个王子都可以匹配到喜欢的女生
所以该图是二分图
且同一个SCC中王子和女生的数目是相同的!! 3.为什么王子不能选择其他SCC的女生?
反证法:如果强连通分量1中的王子选择了强连通分量2中的妹子,
那么势必强连通分量2中的一个王子无法在自己的强连通分量中找到妹子,
那么他就会去别的强连通分量找妹子,这样一直循环下去,
我们知道最终一定是经过了强连通分量1,2,x1,x2,xn,……,1,
王子们才能都找到自己的妹子,这样这些强连通分量1,2,x1,x2,xn,……,1会构成一个强连通分量,
与题设在不同强连通分量中找妹子不符 和王子的同一个SCC里面的女生,该王子都可以选择与其结婚(前提是该王子喜欢) 坑点:
1.对在同一个SCC里面的女生y,王子x不一定喜欢
2.输出的编号要升序排序 */
POJ 1904 King's Quest(SCC的巧妙应用,思维题!!!,经典题)的更多相关文章
- POJ 1904 King's Quest tarjan
King's Quest 题目连接: http://poj.org/problem?id=1904 Description Once upon a time there lived a king an ...
- poj 1904 King's Quest
King's Quest 题意:有N个王子和N个妹子;(1 <= N <= 2000)第i个王子喜欢Ki个妹子:(详见sample)题给一个完美匹配,即每一个王子和喜欢的一个妹子结婚:问每 ...
- Poj 1904 King's Quest 强连通分量
题目链接: http://poj.org/problem?id=1904 题意: 有n个王子和n个公主,王子只能娶自己心仪的公主(一个王子可能会有多个心仪的公主),现已给出一个完美匹配,问每个王子都可 ...
- POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)
题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...
- POJ 1904 King's Quest 强联通分量+输入输出外挂
题意:国王有n个儿子,现在这n个儿子要在n个女孩里选择自己喜欢的,有的儿子可能喜欢多个,最后国王的向导给出他一个匹配.匹配有n个数,代表某个儿子和哪个女孩可以结婚.已知这些条件,要你找出每个儿子可以和 ...
- POJ 1904 King's Quest (强连通分量+完美匹配)
<题目链接> 题目大意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王 ...
- POJ 1904 King's Quest(强连通图)题解
题意:n个王子有自己喜欢的ki个公主,有n个公主,每个王子只能娶一个自己喜欢的公主且不能绿别的王子.现在给你一种王子娶公主的方案,并且保证这种方案是正确的.请你给出,每个王子能娶哪些公主,要求娶这些公 ...
- POJ 1904 King's Quest 强连通分量+二分图增广判定
http://www.cnblogs.com/zxndgv/archive/2011/08/06/2129333.html 这位神说的很好 #include <iostream> #inc ...
- poj 1904 King's Quest tarjan求二分图的所有可选最大匹配边
因为是完美匹配,所以每个点都已经匹配了,那么如果要选择一条别的边,增光路的最后必定找到原来所匹配的点,加上匹配的边,那么就是一个环.所以可选边在一个强连通分量里. #include <iostr ...
随机推荐
- 函数表达式(JavaScript高程笔记)
函数声明 特点:函数声明提升(执行代码之前解析器会先读取函数声明,并使其在执行任何代码之前可用,意味着可以把函数声明放在调用语句之后) function functionName(arg0,arg1) ...
- 设计模式原则(6)--Open-Closed Principle(OCP)--开闭原则
作者QQ:1095737364 QQ群:123300273 欢迎加入! 1.定义: 一个软件实体应当对扩展开放,对修改关闭.即软件实体应尽量在不修改原有代码的情况下进行扩展. 2.使用场 ...
- idea 快捷键总结
IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Sh ...
- KOTLIN-1(常用网址)
---恢复内容开始--- 1.官网:http://kotlinlang.org/ 2.官方文档:https://kotlinlang.org/docs/reference 3.kotlin源码:htt ...
- docker 开发常用命令总结
Docker 常用命令总结,镜像下载,到docker容器创建,常用docker命令的 增删查 1.镜像下载,从hub.docker.com中下载最新版本的postgres docker pull po ...
- 网络通信框架Retrofit2
网络通信框架Retrofit2 1 概要 Retrofit2的简介以及特点 Retrofit2使用配置(导包,权限等) Retrofit2中常用的注解介绍 Retrofit2实现http网络访问 GE ...
- Flutter应用打包发布
本文学习Flutter打包,打包环境,Android studio3.2,打包的程序就使用上文的酷炫天气预报 terminal执行下列命令: 1.生成key(如果有现成的Key跳过这一步) 2.ke ...
- IE浏览器“自定义安全级别”不能设置的原因
“自定义安全级别”和滑块都是灰色,不允许设置.可能的原因: 1.组策略里面设置了: 2.启用了IE增强的安全设置: 程序卸载->选择windows组件->取消增强的安全设置
- maven学习笔记--maven项目创建
使用Maven命令和Eclipse的Maven插件,创建Maven项目 (1)maven命令生成项目 新建一个文件目录,dos进入该目录并执行下面命令: mvn archetype:c ...
- HTML5详解
本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. HTML5的介绍 Web 技术发展时间线 1991 HTML 1994 ...