Coursera-AndrewNg(吴恩达)机器学习笔记——第四周编程作业(多分类与神经网络)
多分类问题——识别手写体数字0-9
一.逻辑回归解决多分类问题
1.图片像素为20*20,X的属性数目为400,输出层神经元个数为10,分别代表1-10(把0映射为10)。
通过以下代码先形式化展示数据 ex3data1.mat内容:
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, ); %求出样本总数
% Randomly select data points to display
rand_indices = randperm(m); %函数功能随机打乱这m个数字,输出给rand_indices.
sel = X(rand_indices(:), :); %按照打乱后的数列取出100个数字,作为X矩阵的行数。 displayData(sel); %通过本函数将选出的X矩阵中100个样本进行图形化
函数displayData()实现解析如下:
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, ))); %四舍五入求出图片的宽度
end colormap(gray); %将图片定义为灰色系 [m n] = size(X);
example_height = (n / example_width); %求出图片的高度 % Compute number of items to display
display_rows = floor(sqrt(m)); %计算出每行每列展示多少个数字图片
display_cols = ceil(m / display_rows); pad = ; %图片之间间隔 % Setup blank display 创建要展示的图片像素大小,空像素,数字图片之间有1像素间隔
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad)); % Copy each example into a patch on the display array 将像素点填充进去
curr_ex = ;
for j = :display_rows
for i = :display_cols
if curr_ex > m,
break;
end% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - ) * (example_height + pad) + (:example_height), ...
pad + (i - ) * (example_width + pad) + (:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val; %reshape函数进行矩阵维数转换
curr_ex = curr_ex + ;
end
if curr_ex > m,
break;
end
end h = imagesc(display_array, [- ]); %将像素点画为图片
axis image off %不显示坐标轴
drawnow; %刷新屏幕
end
2.向量化逻辑回归
向量化代价函数和梯度下降,代码同第三周编程练习相同:http://www.cnblogs.com/LoganGo/p/9009767.html
核心代码如下:
function [J, grad] = lrCostFunction(theta, X, y, lambda) m = length(y); % number of training examples J = ;
grad = zeros(size(theta));
%分别计算代价值J和梯度grad
J=/m*(-(y')*log(sigmoid(X*theta))-(1-y)'*log(-sigmoid(X*theta)))+lambda/(*m)*(theta'*theta-theta(1)^2);
%grad = /m*X'*(sigmoid(X*theta)-y)+lambda*theta/m;
%grad() = grad()-lambda*theta()/m;
grad=/m*X'*(sigmoid(X*theta)-y)+lambda/m*([0;theta(2:end)]);
grad = grad(:); end
3.逻辑回归解决多分类问题
oneVsAll.m函数解析:通过阅读原文中所给的英文解析,足够完成本函数的编写
function [all_theta] = oneVsAll(X, y, num_labels, lambda) m = size(X, );
n = size(X, ); all_theta = zeros(num_labels, n + ); %为训练1-10个便签,所以需要矩阵为10*n+1 X = [ones(m, ) X];
%运用了fmincg()函数求参数,与函数fminunc()相比,处理属性过多时更高效!
options = optimset('GradObj', 'on', 'MaxIter', );
for c=:num_labels,
all_theta(c,:)=fmincg(@(t)(lrCostFunction(t, X, (y==c), lambda)), all_theta(c,:)', options)';
end
end
预测函数predictOneVsAll()函数编写:
function p = predictOneVsAll(all_theta, X) m = size(X, );
num_labels = size(all_theta, ); p = zeros(size(X, ), );
X = [ones(m, ) X];
index=;
pre=zeros(num_labels,); %存储每个样本对应数字1-10的预测值
for c=:m,
for d=:num_labels,
pre(d)=sigmoid(X(c,:)*(all_theta(d,:)'));
end
[maxnum index]=max(pre);
p(c)=index; %找到该样本最大的预测值所对应的数字,作为实际预测值
end
end
二.神经网络解决多分类问题
使用已经训练好的参数θ1θ2来做预测,predict.m如下:
function p = predict(Theta1, Theta2, X) m = size(X, );
num_labels = size(Theta2, );
X=[ones(m,) X]; %为a1添加为1的偏置 p = zeros(size(X, ), ); for i=:m, %分别对m个样本做预测
a2=sigmoid(Theta1*X(i,:)'); %计算a2
a2=[;a2]; %为a2添加为1的偏置
a3=sigmoid(Theta2*a2); %计算a3
[manum index]=max(a3); %求出哪个数字的预测值最大
p(i)=index; %得出预测值
end
end
Coursera-AndrewNg(吴恩达)机器学习笔记——第四周编程作业(多分类与神经网络)的更多相关文章
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第四周
神经网络 1.神经网络发展的动力:在逻辑回归解决复杂的分类问题时,我们使用属性的一些组合来构造新的属性(x12,x1x2,x22...),这样就会造成属性的数目n过多,带来了大量的运算,甚至造成过拟合 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记(完结)
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
随机推荐
- Python后端相关技术/工具栈
编辑器 最常见: vim / SublimeText2 / PyCharm Vim有兴趣可以看看 k-vim 适合Python/Golang开发 本地环境 pip/easy_install 包管理 v ...
- getInitParameter方法
在ServletConfig和ServletContext都有getInitParameter方法, 这两个方法的都能从web.xml中获取参数,但是是有区别的. 1. web.xml文件 <? ...
- 【一个小功能】点击图标/链接发起QQ临时会话
有时候,我们需要实现在网页上点击一个QQ图标来实现QQ临时会话,这样不用添加好友,也能满足及时沟通的需求. 实现方案比较简单,只是为a标签修改href属性,代码如下 <a href=" ...
- [NOI 2015]寿司晚宴
Description 题库链接 给定 \(2\sim n\) 一共 \(n-1\) 个数字,第一个人选择一些数字,第二个人选择一些数字,要求第一个人选的任意一个数字和第二个人选择的任意一个数字都互质 ...
- C++11 Lambda表达汇总总结
C++ 11中的Lambda表达式用于定义并创建匿名的函数对象,以简化编程工作.Lambda的语法形式如下: [函数对象参数] (操作符重载函数参数) mutable或ex ...
- php一些单选、复选框的默认选择方法(示例)
转载 http://www.php.cn/php-weizijiaocheng-360029.html 一. radio和checkbox及php select默认选择的实现代码 1.radio单选框 ...
- 【转】Java工程师成神之路
针对本文,博主最近在写<成神之路系列文章> ,分章分节介绍所有知识点.欢迎关注. 一.基础篇 1.1 JVM 1.1.1. Java内存模型,Java内存管理,Java堆和栈,垃圾回收 h ...
- [日常] Go语言圣经-竞争条件习题
package main import( "fmt" "sync" ) var balance int func Deposit(amount int) { b ...
- Docker初次使用与安装过程
Docker入门 Docker 简介 Docker有两个版本: 社区版(CE) 企业版(EE) Docker Community Edition(CE)非常适合希望开始使用Docker并尝试使用基于容 ...
- 【公众号转载】超详细 Nginx 极简教程,傻瓜一看也会!
什么是Nginx? Nginx (engine x) 是一款轻量级的Web 服务器 .反向代理服务器及电子邮件(IMAP/POP3)代理服务器. 什么是反向代理? 反向代理(Reverse Proxy ...