【BZOJ】3168: [Heoi2013]钙铁锌硒维生素
题解
显然我们既然初始矩阵就能通过线性变换变成单位矩阵,则该矩阵一定有逆
没有逆输出NIE
而且因为这些向量两两正交,则表示一个向量的时候表示方法唯一
那么我们求一个逆可以求出这个矩阵消成单位矩阵的线性表示,再拿第二个矩阵和逆矩阵相乘可以得到第二个矩阵每个行向量用第一个矩阵的行向量唯一的表示方法
如果第二套的第k个行向量的表示里第一行h个行向量系数不为0,则h可以被k替代
建图二分图匹配,先求一个匹配出来,然后对于每个点从前往后固定匹配看看能不能使得靠前的更小
说的很高端吧
算了我简单一点说
就是一考虑初始的矩阵,什么两三行加加减减乘个系数,是可以消成单位1的,这个可以用类似高斯消元的方法解决,实际上如果你了解矩阵求逆的话你就知道我在给这个矩阵求逆矩阵
如果消不成就是NIE了
如果你不了解的话,你可以把每次变换每个行所用到的系数记下来,变成另一个矩阵\(B\)
那么我们考虑第二套的某个向量,
\((b_{1},b_{2}...b_{n}) = \sum_{i = 1}^{n} c_{i} (a_{1},a_{2}..a_{n})\)
显然如果\(c_{i}\)有数的话,我门可以把\(c_{i}\)移到等号左边,把第二套的这个向量移到等式右边,就证明\(i\)可以被这个向量换掉了
这个系数可以用两个矩阵相乘求出来
图建出来了,那就是跑二分图了
我们先求出一个完备匹配来,没有就是NIE,有的话对于\(1-n\)从小到大枚举能更新的匹配点,然后把这个点强制不选再跑二分图看看会不会合法
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 305
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
int g[305][305],matc[305],matk[305];
bool vis[305];
bool flag = 0;
struct Matrix {
db f[305][305];
Matrix() {memset(f,0,sizeof(f));}
void unit() {
for(int i = 1 ; i <= N ; ++i) {
f[i][i] = 1.0;
}
}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
for(int k = 1 ; k <= N ; ++k) {
c.f[i][j] += a.f[i][k] * b.f[k][j];
}
}
}
return c;
}
friend Matrix operator ~(Matrix a) {
Matrix b;
b.unit();
for(int i = 1 ; i <= N ; ++i) {
int l = i;
for(int j = i + 1; j <= N ; ++j) {
if(fabs(a.f[j][i]) > fabs(a.f[l][i])) l = j;
}
if(fabs(a.f[l][i]) < 1e-8) {flag = 1;return b;}
if(i != l) {
for(int j = 1 ; j <= N ; ++j) {
swap(a.f[i][j],a.f[l][j]);
swap(b.f[i][j],b.f[l][j]);
}
}
db t = 1.0 / a.f[i][i];
for(int j = 1 ; j <= N ; ++j) {
a.f[i][j] *= t;
b.f[i][j] *= t;
}
for(int j = 1 ; j <= N ; ++j) {
if(i == j) continue;
db t = a.f[j][i];
for(int k = 1 ; k <= N ; ++k) {
a.f[j][k] -= t * a.f[i][k];
b.f[j][k] -= t * b.f[i][k];
}
}
}
return b;
}
}A,B,C;
bool match(int u) {
for(int i = 1 ; i <= N ; ++i) {
if(g[u][i]) {
if(!vis[i]) {
vis[i] = 1;
if(!matc[i] || match(matc[i])) {
matc[i] = u;matk[u] = i;
return true;
}
}
}
}
return false;
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
scanf("%lf",&A.f[i][j]);
}
}
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
scanf("%lf",&C.f[i][j]);
}
}
B = ~A;
if(flag) {
puts("NIE");return;
}
C = C * B;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(fabs(C.f[i][j]) > 1e-8) {
g[j][i] = 1;
}
}
}
for(int i = 1 ; i <= N ; ++i) {
memset(vis,0,sizeof(vis));
if(!match(i)) {
puts("NIE");return;
}
}
puts("TAK");
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(!g[i][j]) continue;
if(matk[i] == j) break;
if(matc[j] < i) continue;
memset(vis,0,sizeof(vis));
for(int k = 1 ; k < i ; ++k) vis[matk[k]] = 1;
vis[j] = 1;
int t = matk[i];
matc[t] = 0;
if(match(matc[j])) {
matk[i] = j;matc[j] = i;
break;
}
else {
matc[t] = i;
}
}
}
for(int i = 1 ; i <= N ; ++i) {
out(matk[i]);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【BZOJ】3168: [Heoi2013]钙铁锌硒维生素的更多相关文章
- BZOJ 3168: [Heoi2013]钙铁锌硒维生素 [线性基 Hungary 矩阵求逆]
3168: [Heoi2013]钙铁锌硒维生素 题意:给一个线性无关组A,再给一个B,要为A中每个向量在B中选一个可以代替的向量,替换后仍然线性无关.判断可行和求字典序最小的解 PoPoQQQ orz ...
- BZOJ 3168 Heoi2013 钙铁锌硒维生素 矩阵求逆+匈牙利算法
题目大意:给定一个n∗n的满秩矩阵A和一个n∗n的矩阵B.求一个字典序最小的1...n的排列a满足将随意一个Ai换成Bai后矩阵A仍然满秩 我们考虑建立一个二分图.假设Ai能换成Bj.就在i−> ...
- BZOJ 3168 [Heoi2013]钙铁锌硒维生素 ——矩阵乘法 矩阵求逆
考虑向量ai能否换成向量bj 首先ai都是线性无关的,然后可以a线性表出bj c1*a1+c2*a2+...=bj 然后移项,得 c1/ci*a1+...-1/ci*bj+...=ai 所以当ci不为 ...
- 洛谷 P4100 [HEOI2013]钙铁锌硒维生素 解题报告
P4100 [HEOI2013]钙铁锌硒维生素 题目描述 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加 宇宙比赛的饮食. 众所周知,前往宇宙的某个星球,通常要花费好长好长的时间, ...
- 【BZOJ3168】[Heoi2013]钙铁锌硒维生素 高斯消元求矩阵的逆+匈牙利算法
[BZOJ3168][Heoi2013]钙铁锌硒维生素 Description 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加宇宙比赛的饮食.众所周知,前往宇宙的某个星球,通常要花 ...
- BZOJ 3168 Luogu P4100 [HEOI2013]钙铁锌硒维生素 (矩阵求逆、二分图匹配)
线性代数+图论好题. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3168 (luogu) https://www.lu ...
- BZOJ3168. [HEOI2013]钙铁锌硒维生素(线性代数+二分图匹配)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3168 题解 首先,我们需要求出对于任意的 \(i, j(1 \leq i, j \leq ...
- BZOJ3168: [Heoi2013]钙铁锌硒维生素
设$A^TC=B^T$,这样$C_{ij}$表示$B_j$的线性表出需要$A_i$,那么$B_j$可以替换$A_i$,根据$C=(A^T)^{-1}B^T$求出$C$.要求字典序最小完美匹配,先求任意 ...
- bzoj 3165: [Heoi2013]Segment 动态凸壳
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 202 Solved: 89[Submit][Stat ...
随机推荐
- MT【113】无中生有加一个减一个
代数上可以这么解答:不妨设$x\le y$ 1)若$y-x\le\frac{1}{2},则|f(x)-f(y)|<\frac{1}{2}|x-y|\le\frac{1}{4}$ 2)若$y-x& ...
- Go 语言中的方法,接口和嵌入类型
https://studygolang.com/articles/1113 概述 在 Go 语言中,如果一个结构体和一个嵌入字段同时实现了相同的接口会发生什么呢?我们猜一下,可能有两个问题: 编译器会 ...
- C语言复习---迭代法,牛顿迭代法,二分法求根
一:用迭代法求 x=√a.求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2. #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> ...
- JAVA io 包小结
IO 无非读写 I --> Reader O--> Writer 为了方便字符 或者 文本文件的 操作创造出了 字符流 尤其是 缓冲字符输入输出流(BufferedReader,Buff ...
- (32位)本体学习程序(ontoEnrich)系统使用说明文档
系统运行:文件夹system下,可执行文件ontoEnrichment --------------------------------------------------------1.简单概念学习 ...
- linq中let关键字学习
linq中let关键字就是对子查询的一个别名,let子句用于在查询中添加一个新的局部变量,使其在后面的查询中可见. linq中let关键字实例 1.传统下的子查询与LET关键字的区别 C# 代 ...
- VAE(Variational Autoencoder)的原理
Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint ar ...
- 利用gcc自带的功能-fstack-protector检测栈溢出及其实现【转】
转自:https://www.cnblogs.com/leo0000/p/5719186.html 最近又遇到了一个崩溃,栈回溯非常怪异. /lib/i386-linux-gnu/libc.so.6( ...
- 最完整的PS快捷键大全(绝对经典)
快速恢复默认值 有些不擅长Photoshop的朋友为了调整出满意的效果真是几经周折,结果发现还是原来的默认效果最好,这下傻了眼,后悔不该当初呀!怎么恢复到默认值呀?试着轻轻点按选项栏上的工具图标,然后 ...
- jquery-easyui:如何设置组件属性
在这里以面板为例: $().ready(function() { $('#menu').tree({ url : '/menu', onClick : function(node) { $('#cen ...