hdu 6118度度熊的交易计划(费用流)
度度熊的交易计划
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1192 Accepted Submission(s): 440
喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。
由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。
同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。
由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。
据测算,每一个商品运输1公里,将会花费1元。
那么喵哈哈村最多能够实现多少盈利呢?
每组测试数据包含:
第一行两个整数n,m表示喵哈哈村由n个片区、m条街道。
接下来n行,每行四个整数a[i],b[i],c[i],d[i]表示的第i个地区,能够以a[i]的价格生产,最多生产b[i]个,以c[i]的价格出售,最多出售d[i]个。
接下来m行,每行三个整数,u[i],v[i],k[i],表示该条公路连接u[i],v[i]两个片区,距离为k[i]
可能存在重边,也可能存在自环。
满足:
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
5 5 6 1
3 5 7 7
1 2 1
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std; const int INF = ;
const int N = ;
const int M = ;
struct Edge{
int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total;
bool vis[N];
void addEdge(int u,int v,int cap,int cost,int &k){
edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
edge[k].u=v,edge[k].v=u,edge[k].cap = ,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
memset(head,-,sizeof(head));
tot = ;
}
bool spfa(int s,int t,int n){
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
low[i] = (i==s)?:INF;
pre[i] = -;
}
queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v;
if(edge[k].cap>&&low[v]>low[u]+edge[k].cost){
low[v] = low[u] + edge[k].cost;
pre[v] = k; ///v为终点对应的边
if(!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
}
int MCMF(int s,int t,int n){
int mincost = ,minflow,flow=;
while(spfa(s,t,n))
{
if(low[t]>=) break;
minflow=INF+;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
minflow=min(minflow,edge[i].cap);
flow+=minflow;
for(int i=pre[t];i!=-;i=pre[edge[i].u])
{
edge[i].cap-=minflow;
edge[i^].cap+=minflow;
}
mincost+=low[t]*minflow;
}
total=flow;
return mincost;
} int main()
{
int n,m,h,tcase;
while(scanf("%d%d",&n,&m)!=EOF){ init();
int s = ,t = n+;
for(int i=;i<=n;i++){
//if(a[i]>=mx) b[i] = 0;
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
addEdge(s,i,b,a,tot);
addEdge(i,t,d,-c,tot);
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(u,v,INF,w,tot);
addEdge(v,u,INF,w,tot);
}
long long ans = MCMF(s,t,n+);
cout<<-ans<<endl;
}
return ;
}
hdu 6118度度熊的交易计划(费用流)的更多相关文章
- HDU 6118 度度熊的交易计划 【最小费用最大流】 (2017"百度之星"程序设计大赛 - 初赛(B))
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 6118 度度熊的交易计划 (最小费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 6118 度度熊的交易计划
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 6118 度度熊的交易计划(最小费用最大流)
Problem Description度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个 ...
- HDU 6118 度度熊的交易计划 最大费用可行流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118 题意:中文题 分析: 最小费用最大流,首先建立源点 s ,与超级汇点 t .因为生产一个商品需要 ...
- HDU 6118 度度熊的交易计划(网络流-最小费用最大流)
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题: 喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区. 由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但 ...
- HDU 6118 度度熊的交易计划(费用流)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6118 [题目大意] 给出一张无向边权图,每个点最多可以生产b[i]商品,每件代价为a[i], 每个 ...
- HDU 6118 2017百度之星初赛B 度度熊的交易计划(费用流)
度度熊的交易计划 Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 2017"百度之星"程序设计大赛 - 初赛(B) 度度熊的交易计划 最小费用最大流求最大费用
/** 题目:度度熊的交易计划 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118 题意:度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题 ...
随机推荐
- Codeforces 859D - Third Month Insanity
题意 有 \(2^n\) 个人要进行比赛,每次 \(2i\) 与 \(2i+1\) 号人进行比赛(\(i\in [0,2^{n-1})\) ).这一轮中赢的人进入下一轮.下一轮比赛的时候把进入这一轮的 ...
- gson 说明
JSON对象格式 法兹测试仪测试案例编纂JavaScript对象表示法(JSON)格式的特殊字符转义,类型等,由于谷歌GSON是底层的JSON库处理类型的详细说明,请参阅到GSON文档的详细信息,请参 ...
- in packet sniffer
in packet sniffer 来源 https://kb.fortinet.com/kb/microsites/search.do?cmd=displayKC&docType=kc&am ...
- MT【201】折线计数
甲乙两人参加竞选,结果甲得n票,乙得m票(n > m) . 则在唱票过程中,甲的累计票数始终超过乙的累计票数的概率是_____________. 答案:$\dfrac{n-m}{n+m}$
- 洛谷P3960 列队(NOIP2017)(Splay)
洛谷题目传送门 最弱的Splay...... 暴力模拟30分(NOIP2017实际得分,因为那时连Splay都不会)...... 发现只是一个点从序列里搬到了另一个位置,其它点的相对位置都没变,可以想 ...
- 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)
bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...
- 【题解】 [ZJOI2012]灾难 (拓扑排序+LCA)
懒得复制,戳我戳我 Solution: 这题思路很神奇,首先你要知道这个毁灭树是怎么保证实现的:一句话就是如果该节点要被破坏,他的所有父节点就要被破坏,也就只要所有父节点的LCA被破坏就可以,所以我们 ...
- BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...
- 【bzoj3224】 Tyvj1728—普通平衡树
http://www.lydsy.com/JudgeOnline/problem.php?id=3224 (题目链接) 题意 1. 插入x数:2. 删除x数(若有多个相同的数,因只删除一个):3. 查 ...
- eclipse java build path问题汇总
背景:在项目开发过程中,很多应用都进行了模块划分,有的时候是jar包依赖,有的时候通过build path进行配置,搞清楚这部分有助于理解项目之间的关系. 1 tms项目开发 1.1 问题描述 项目结 ...