Spring Cloud限流详解
转自:https://blog.csdn.net/tracy38/article/details/78685707
在高并发的应用中,限流往往是一个绕不开的话题。本文详细探讨在Spring Cloud中如何实现限流。
在Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法。常见的限流算法有漏桶算法以及令牌桶算法。这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文了。
Google Guava 为我们提供了限流工具类RateLimiter ,于是乎,我们可以撸代码了。
代码示例
|
@Component
public class RateLimitZuulFilter extends ZuulFilter {
private final RateLimiter rateLimiter = RateLimiter.create(1000.0);
@Override
public String filterType() {
return FilterConstants.PRE_TYPE;
}
@Override
public int filterOrder() {
return Ordered.HIGHEST_PRECEDENCE;
}
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
return true;
}
@Override
public Object run() {
try {
RequestContext currentContext = RequestContext.getCurrentContext();
HttpServletResponse response = currentContext.getResponse();
if (!rateLimiter.tryAcquire()) {
HttpStatus httpStatus = HttpStatus.TOO_MANY_REQUESTS;
response.setContentType(MediaType.TEXT_PLAIN_VALUE);
response.setStatus(httpStatus.value());
response.getWriter().append(httpStatus.getReasonPhrase());
currentContext.setSendZuulResponse(false);
throw new ZuulException(
httpStatus.getReasonPhrase(),
httpStatus.value(),
httpStatus.getReasonPhrase()
);
}
} catch (Exception e) {
ReflectionUtils.rethrowRuntimeException(e);
}
return null;
}
}
|
如上,我们编写了一个pre 类型的过滤器。对Zuul过滤器有疑问的可参考我的博客:
Spring Cloud内置的Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/zuul-filter-in-spring-cloud
Spring Cloud Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/spring-cloud-zuul-filter
在过滤器中,我们使用Guava RateLimiter 实现限流,如果已经达到最大流量,就抛异常。
分布式场景下的限流
以上单节点Zuul下的限流,但在生产中,我们往往会有多个Zuul实例。对于这种场景如何限流呢?我们可以借助Redis实现限流。
使用redis实现,存储两个key,一个用于计时,一个用于计数。请求每调用一次,计数器增加1,若在计时器时间内计数器未超过阈值,则可以处理任务
|
if(!cacheDao.hasKey(TIME_KEY)) {
cacheDao.putToValue(TIME_KEY, 0, 1, TimeUnit.SECONDS);
}
if(cacheDao.hasKey(TIME_KEY) && cacheDao.incrBy(COUNTER_KEY, 1) > 400) {
// 抛个异常什么的
}
|
实现微服务级别的限流
一些场景下,我们可能还需要实现微服务粒度的限流。此时可以有两种方案:
方式一:在微服务本身实现限流。
和在Zuul上实现限流类似,只需编写一个过滤器或者拦截器即可,比较简单,不作赘述。个人不太喜欢这种方式,因为每个微服务都得编码,感觉成本很高啊。
加班那么多,作为程序猿的我们,应该学会偷懒,这样才可能有时间孝顺父母、抱老婆、逗儿子、遛狗养鸟、聊天打屁、追求人生信仰。好了不扯淡了,看方法二吧。
方法二:在Zuul上实现微服务粒度的限流。
在讲解之前,我们不妨模拟两个路由规则,两种路由规则分别代表Zuul的两种路由方式。
|
zuul:
routes:
microservice-provider-user: /user/**
user2:
url: http://localhost:8000/
path: /user2/**
|
如配置所示,在这里,我们定义了两个路由规则,microservice-provider-user 以及user2 ,其中microservice-provider-user 这个路由规则使用到Ribbon + Hystrix,走的是RibbonRoutingFilter ;而user2 这个路由用不上Ribbon也用不上Hystrix,走的是SipleRoutingFilter 。如果你搞不清楚这点,请参阅我的博客:
- Spring Cloud内置的Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/zuul-filter-in-spring-cloud
- Spring Cloud Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/spring-cloud-zuul-filter
搞清楚这点之后,我们就可以撸代码了:
|
@Component
public class RateLimitZuulFilter extends ZuulFilter {
private Map<String, RateLimiter> map = Maps.newConcurrentMap();
@Override
public String filterType() {
return FilterConstants.PRE_TYPE;
}
@Override
public int filterOrder() {
// 这边的order一定要大于org.springframework.cloud.netflix.zuul.filters.pre.PreDecorationFilter的order
// 也就是要大于5
// 否则,RequestContext.getCurrentContext()里拿不到serviceId等数据。
return Ordered.LOWEST_PRECEDENCE;
}
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
return true;
}
@Override
public Object run() {
try {
RequestContext context = RequestContext.getCurrentContext();
HttpServletResponse response = context.getResponse();
String key = null;
// 对于service格式的路由,走RibbonRoutingFilter
String serviceId = (String) context.get(SERVICE_ID_KEY);
if (serviceId != null) {
key = serviceId;
map.putIfAbsent(serviceId, RateLimiter.create(1000.0));
}
// 如果压根不走RibbonRoutingFilter,则认为是URL格式的路由
else {
// 对于URL格式的路由,走SimpleHostRoutingFilter
URL routeHost = context.getRouteHost();
if (routeHost != null) {
String url = routeHost.toString();
key = url;
map.putIfAbsent(url, RateLimiter.create(2000.0));
}
}
RateLimiter rateLimiter = map.get(key);
if (!rateLimiter.tryAcquire()) {
HttpStatus httpStatus = HttpStatus.TOO_MANY_REQUESTS;
response.setContentType(MediaType.TEXT_PLAIN_VALUE);
response.setStatus(httpStatus.value());
response.getWriter().append(httpStatus.getReasonPhrase());
context.setSendZuulResponse(false);
throw new ZuulException(
httpStatus.getReasonPhrase(),
httpStatus.value(),
httpStatus.getReasonPhrase()
);
}
} catch (Exception e) {
ReflectionUtils.rethrowRuntimeException(e);
}
return null;
}
}
|
简单讲解一下这段代码:
对于microservice-provider-user 这个路由,我们可以用context.get(SERVICE_ID_KEY); 获取到serviceId,获取出来就是microservice-provider-user ;
而对于user2 这个路由,我们使用context.get(SERVICE_ID_KEY); 获得是null,但是呢,可以用context.getRouteHost() 获得路由到的地址,获取出来就是http://localhost:8000/ 。接下来的事情,你们懂的。
改进与提升
实际项目中,除以上实现的限流方式,还可能会:
一、在上文的基础上,增加配置项,控制每个路由的限流指标,并实现动态刷新,从而实现更加灵活的管理
二、基于CPU、内存、数据库等压力限流(感谢平安常浩智)提出。。
下面,笔者借助Spring Boot Actuator提供的Metrics 能力进行实现基于内存压力的限流——当可用内存低于某个阈值就开启限流,否则不开启限流。
|
@Component
public class RateLimitZuulFilter extends ZuulFilter {
@Autowired
private SystemPublicMetrics systemPublicMetrics;
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
Collection<Metric<?>> metrics = systemPublicMetrics.metrics();
Optional<Metric<?>> freeMemoryMetric = metrics.stream()
.filter(t -> "mem.free".equals(t.getName()))
.findFirst();
// 如果不存在这个指标,稳妥起见,返回true,开启限流
if (!freeMemoryMetric.isPresent()) {
return true;
}
long freeMemory = freeMemoryMetric.get()
.getValue()
.longValue();
// 如果可用内存小于1000000KB,开启流控
return freeMemory < 1000000L;
}
// 省略其他方法
}
|
三、实现不同维度的限流,例如:
- 对请求的目标URL进行限流(例如:某个URL每分钟只允许调用多少次)
- 对客户端的访问IP进行限流(例如:某个IP每分钟只允许请求多少次)
- 对某些特定用户或者用户组进行限流(例如:非VIP用户限制每分钟只允许调用100次某个API等)
- 多维度混合的限流。此时,就需要实现一些限流规则的编排机制。与、或、非等关系。
参考文档
- 分布式环境下限流方案的实现:http://blog.csdn.net/Justnow_/article/details/53055299
Spring Cloud限流详解的更多相关文章
- Spring Cloud Zuul 限流详解(附源码)(转)
在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法. ...
- Spring Cloud(十二):Spring Cloud Zuul 限流详解(附源码)(转)
前面已经介绍了很多zuul的功能,本篇继续介绍它的另一大功能.在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选 ...
- Spring Cloud限流思路及解决方案
转自: http://blog.csdn.net/zl1zl2zl3/article/details/78683855 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Clo ...
- SpringCloud入门之应用程序上下文服务(Spring Cloud Context)详解
构建分布式系统非常复杂且容易出错.Spring Cloud为最常见的分布式系统模式提供了简单易用的编程模型,帮助开发人员构建弹性,可靠和协调的应用程序.Spring Cloud构建于Spring Bo ...
- Spring Cloud Ribbon配置详解
概述 有时候需要自定义Ribbon的配置和客户端超时配置. 自动化配置 /* 使用属性自定义功能区客户端 从版本1.2.0开始,Spring Cloud Netflix现在支持使用属性与Ribbon文 ...
- Spring Boot的前世今生以及它和Spring Cloud的关系详解。
要了解Spring Boot的发展背景,还得从2004年Spring Framework1.0版本发布开始说起,不过大家都是从开始学习Java就使用Spring Framework了,所以就不做过多展 ...
- Spring Cloud Feign原理详解
目录 1.什么是Feign? 2.Open Feign vs Spring Cloud Feign 2.1.OpenFeign 2.2.Spring Cloud Open Feign 3.Spring ...
- SpringCloud Alibaba Sentinel 限流详解
点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友. 项目源码地址:公众号回复 sentinel,即可免费获取源码 熔断规则 在上一篇文章中我们讲解了 ...
- 笔记:Spring Cloud Ribbon RestTemplate 详解
详细介绍RestTemplate 针对几种不同请求类型和参数类型的服务调用实现,示例代码中的 restTemplate 都是通过Spring 注入方式创建的,相关代码如下: @Autowired pr ...
随机推荐
- PyCharm的一些设置
设置使用UTF-8 在任何情况下: 设置写python脚本,新建 脚本的时候默认加的头文件. # !/usr/bin/env python# -*- coding:utf-8 -*-# Author: ...
- java打印实心10*10正方形, 空心10*10正方形
public class PrintSquare { public static void main(String[] args) { printSolidSquare(10); System.out ...
- Docker删除镜像
docker images往往不知不觉就占满了硬盘空间,为了清理冗余的image,可采用以下方法: 1.进入root权限 sudo su 2.停止所有的container,这样才能够删除其中的imag ...
- 查看linux文件目录的大小和文件夹包含的文件数
du -h --max-depth=|sort -n du -h --max-depth=|grep G|sort -n df -h 清理/var/log # 清除 # 一定要以root身份来运行这个 ...
- git创建远程项目并进行代码管理及相关命令
1.windows下载Git https://git-scm.com/downloads 然后一路点击安装 2.登录github,点击右上角创建仓库 3.在本地项目根目录下 输入如下命令 ss ...
- SpringBoot在Kotlin中的实现(二)
根据现在的开发模式和网上的一些资料,SpringBoot需要对业务和操作进行分层,通常分为controller.entity.service.respository等结构.下面以Kotlin官网的例子 ...
- es6基础(2)--解构赋值
//解构赋值 { let a,b,rest; [a,b]=[1,2]; console.log(a,b); } //数组解构赋值 { let a,b,rest; [a,b,...rest]=[1,2, ...
- Spring Boot 整合mybatis-generator
Maven 引入 mybatis-generator插件 <build> <plugins> <plugin> <groupId>org.springf ...
- 性能测试day02_后端网络协议架构
接着第一天的尾,继续来学习性能测试,上一次说到性能要大致经历哪些阶段,那么我们也来看下行业的做法: 行业有两种做法,一个是TPC,另一个是SPEC: TPC:指定业务类型,获得该指定业务的性能指标,也 ...
- 爬取猫眼电影TOP100
本文所讲的爬虫项目实战属于基础.入门级别,使用的是Python3.5实现的. 本项目基本目标:在猫眼电影中把top100的电影名,排名,海报,主演,上映时间,评分等爬取下来 爬虫原理和步骤 爬虫,就是 ...