sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画
from sklearn.svm import SVC
from sklearn.datasets import make_classification
import numpy as np X,y = make_classification() def plot_validation_curve(estimator,X,y,param_name="gamma",
param_range=np.logspace(-6,-1,5),cv=5,scoring="accuracy"):
"""
描述:获得某个参数的不同取值在训练集和测试集上的表现
"""
from sklearn.model_selection import validation_curve
import matplotlib.pyplot as plt train_scores,test_scores = validation_curve(estimator=estimator,
X=X,
y=y,
cv=cv,
scoring=scoring,
param_name=param_name,
param_range=param_range) train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve")
plt.xlabel("$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1) plt.semilogx(param_range,train_scores_mean,label="Training score",color="darkorange", lw=2)
plt.fill_between(param_range,
train_scores_mean-train_scores_std,
train_scores_mean+train_scores_std,
alpha=0.2,
color="darkorange",
lw=2) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",color="navy", lw=2)
plt.fill_between(param_range,
test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std,
alpha=0.2,
color="navy",
lw=2) plt.legend(loc="best")
plt.show() plot_validation_curve(estimator=SVC(),
X=X,y=y,
param_name="gamma",
param_range=np.logspace(-6,-1,5),cv=5,scoring="accuracy")
sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画的更多相关文章
- sklearn不同数量的训练集在测试集上的表现的曲线刻画
def plot_learning_curve(estimator,X,y,cv=5,train_sizes=[0.1,0.3,0.5,0.7,0.8,0.9]): """ ...
- sklearn学习3----模型选择和评估(1)训练集和测试集的切分
来自链接:https://blog.csdn.net/zahuopuboss/article/details/54948181 1.sklearn.model_selection.train_test ...
- sklearn——train_test_split 随机划分训练集和测试集
sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...
- sklearn中的train_test_split (随机划分训练集和测试集)
官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ...
- hibernate的dao中参数的传递取值
hibernate的dao中参数的传递取值 private Query setParameter(Query query, Map<String, Object> map) { if (m ...
- loadrunner:参数类型及其取值机制
参数类型 参数名随意取,建议取通俗易懂的名字,下面我们重点介绍一下参数的类型. ●DateTime: 很简单, 在需要输入日期/时间的地方, 可以用DateTime 类型来替代. 其属性设置也很简单, ...
- fopen()函数中参数mode的取值
FILE * fopen(const char * path,const char * mode); 参数mode字符串则代表着流形态. mode有下列几种形态字符串: r 打开只读文件,该文件必须存 ...
- Sklearn分类树在合成数集上的表现
小伙伴们大家好~o( ̄▽ ̄)ブ,今天我们开始来看一下Sklearn分类树的表现,我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) S ...
- 使用sklearn进行数据挖掘-房价预测(2)—划分测试集
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...
随机推荐
- IntelliJ快捷键笔记
1.查找文件:Ctrl+Shift+N 2.大小写转换:Ctrl+Shift+U 3.get/set方法快捷键:Alt+Insert 4. 查看类继承关系:Ctrl+H或者Ctrl+Shift+Alt ...
- debezium sql server 集成
debezium 是一个方便的cdc connector 可以帮助我们解决好多数据实时变更处理.数据分析.微服务的数据通信 从上次跑简单demo到现在,这个工具是有好多的变更,添加了好多方便的功能,支 ...
- IE浏览器兼容问题
文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 为了帮助确保你的网页在所有未来的IE版本都有一致的外观,IE8引入 ...
- 初始Openwrt
系统结构 在上一章我们已经完成了刷机工作,这个时候系统进行了首次启动,并且格式化了它的"可写"分区.那么在设备里分区到底是怎么样进行的呢?我们首先需要知道:不同的处理器下OpenW ...
- 对HTML中的文字的修饰
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- MQTT压力测试工具之JMeter插件教程
基于Jmeter的MQTT测试插件-上 1. Jmeter插件简介 Apache JMeter是Apache组织开发的基于Java的压力测试工具.下载 用于对软件做压力测试,它最初被设计用于Web应用 ...
- 深入理解ASP.NET MVC(7)
系列目录 Action的定位 再次回到Controller的ExecuteCore方法,回到action调用的入口: 1 if (!ActionInvoker.InvokeAction(Control ...
- Java通过webservice接口获取天气信息
通过SOAP请求的方式获取天气信息并解析返回的XML文件. 参考: http://www.webxml.com.cn/WebServices/WeatherWS.asmx import java.io ...
- Spring Cloud(Dalston.SR5)--Eureka 注册中心高可用搭建
高可用集群 在微服务架构这样的分布式环境中,我们需要充分考虑发生故障的情况,所以在生产环境中必须对各个组件进行高可用部署,对与微服务和服务注册中心都需要高可用部署,Eureka 高可用实际上就是将自己 ...
- class path resource [spring/ApplicationContext-springmvc.xml] cannot be opened because it does not exist
配置如下: <init-param> <param-name>contextConfigLocation</param-name> <param-va ...