from sklearn.svm import SVC
from sklearn.datasets import make_classification
import numpy as np X,y = make_classification() def plot_validation_curve(estimator,X,y,param_name="gamma",
param_range=np.logspace(-6,-1,5),cv=5,scoring="accuracy"):
"""
描述:获得某个参数的不同取值在训练集和测试集上的表现
"""
from sklearn.model_selection import validation_curve
import matplotlib.pyplot as plt train_scores,test_scores = validation_curve(estimator=estimator,
X=X,
y=y,
cv=cv,
scoring=scoring,
param_name=param_name,
param_range=param_range) train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve")
plt.xlabel("$\gamma$")
plt.ylabel("Score")
plt.ylim(0.0, 1.1) plt.semilogx(param_range,train_scores_mean,label="Training score",color="darkorange", lw=2)
plt.fill_between(param_range,
train_scores_mean-train_scores_std,
train_scores_mean+train_scores_std,
alpha=0.2,
color="darkorange",
lw=2) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",color="navy", lw=2)
plt.fill_between(param_range,
test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std,
alpha=0.2,
color="navy",
lw=2) plt.legend(loc="best")
plt.show() plot_validation_curve(estimator=SVC(),
X=X,y=y,
param_name="gamma",
param_range=np.logspace(-6,-1,5),cv=5,scoring="accuracy")

sklearn获得某个参数的不同取值在训练集和测试集上的表现的曲线刻画的更多相关文章

  1. sklearn不同数量的训练集在测试集上的表现的曲线刻画

    def plot_learning_curve(estimator,X,y,cv=5,train_sizes=[0.1,0.3,0.5,0.7,0.8,0.9]): """ ...

  2. sklearn学习3----模型选择和评估(1)训练集和测试集的切分

    来自链接:https://blog.csdn.net/zahuopuboss/article/details/54948181 1.sklearn.model_selection.train_test ...

  3. sklearn——train_test_split 随机划分训练集和测试集

    sklearn——train_test_split 随机划分训练集和测试集 sklearn.model_selection.train_test_split随机划分训练集和测试集 官网文档:http: ...

  4. sklearn中的train_test_split (随机划分训练集和测试集)

    官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ...

  5. hibernate的dao中参数的传递取值

    hibernate的dao中参数的传递取值 private Query setParameter(Query query, Map<String, Object> map) { if (m ...

  6. loadrunner:参数类型及其取值机制

    参数类型 参数名随意取,建议取通俗易懂的名字,下面我们重点介绍一下参数的类型. ●DateTime: 很简单, 在需要输入日期/时间的地方, 可以用DateTime 类型来替代. 其属性设置也很简单, ...

  7. fopen()函数中参数mode的取值

    FILE * fopen(const char * path,const char * mode); 参数mode字符串则代表着流形态. mode有下列几种形态字符串: r 打开只读文件,该文件必须存 ...

  8. Sklearn分类树在合成数集上的表现

    小伙伴们大家好~o( ̄▽ ̄)ブ,今天我们开始来看一下Sklearn分类树的表现,我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) S ...

  9. 使用sklearn进行数据挖掘-房价预测(2)—划分测试集

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

随机推荐

  1. MySQL Lock--MySQL加锁规则

    ===================================================================== 淘宝林晓斌总结 在可重复读事务隔离级别下,加锁规则如下: 原 ...

  2. terraform 几个方便的工具

    几个方便的terraform 工具,方便了解terraform terraform-docs 方便的查看资源的信息(支持markdown,json 格式),对于ci/cd 很方便 项目地址 https ...

  3. 从一到无穷大:科学中的事实和臆测 (G. 伽莫夫 著)

    第一部分 做做数字游戏 第一章 大数 (已看) 第二章 自然数和人工数 (已看) 第二部分 空间,时间与爱因斯坦 第三章 空间的不寻常的性质 (已看) 第四章 四维世界 (已看) 第五章 时间和空间的 ...

  4. 两个int(32位)整数m和n的二进制表达中,有多少个位(bit)不同

    思路:利用&用算加右移的方法来提取二进制中的每一位数,然后进行比较,查看是否相同. #include<stdio.h> #include<stdlib.h> int m ...

  5. e.target和e.srcElement

    IE下,event对象有srcElement属性,但是没有target属性; Firefox下,event对象有target属性,但是没有srcElement属性.但他们的作用是相当的,即: fire ...

  6. 设置 sideload Outlook Add-ins

    上期,我们讲到了用前端技术去建立一个outlook add-ins 我们今天来讲解一下怎样测试一个sideload outlook add-ins. 1. 我们需要登录Outlook在Office 3 ...

  7. windows删除文件或目录CMD命令

    rd/s/q 盘符:\某个文件夹  (强制删除文件文件夹和文件夹内所有文件)del/f/s/q 盘符:\文件名  (强制删除文件,文件名必须加文件后缀名)

  8. [转]HashMap的实现原理

    1.    HashMap概述: HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变 ...

  9. web 前端安全问题

    转载自:https://segmentfault.com/a/1190000006672214?utm_source=weekly&utm_medium=email&utm_campa ...

  10. python list 转换为str

    xiaoquInfo = ['暂无参考均价', '中仪花园海伦堡', '113.403781', '22.540973', '2008年建成', '塔楼', '2元/平米/月', '海伦堡物业', ' ...