Codeforces Round #370 (Div. 2) D. Memory and Scores 动态规划
D. Memory and Scores
题目连接:
http://codeforces.com/contest/712/problem/D
Description
Memory and his friend Lexa are competing to get higher score in one popular computer game. Memory starts with score a and Lexa starts with score b. In a single turn, both Memory and Lexa get some integer in the range [ - k;k] (i.e. one integer among - k, - k + 1, - k + 2, ..., - 2, - 1, 0, 1, 2, ..., k - 1, k) and add them to their current scores. The game has exactly t turns. Memory and Lexa, however, are not good at this game, so they both always get a random integer at their turn.
Memory wonders how many possible games exist such that he ends with a strictly higher score than Lexa. Two games are considered to be different if in at least one turn at least one player gets different score. There are (2k + 1)2t games in total. Since the answer can be very large, you should print it modulo 109 + 7. Please solve this problem for Memory.
Input
The first and only line of input contains the four integers a, b, k, and t (1 ≤ a, b ≤ 100, 1 ≤ k ≤ 1000, 1 ≤ t ≤ 100) — the amount Memory and Lexa start with, the number k, and the number of turns respectively.
Output
Print the number of possible games satisfying the conditions modulo 1 000 000 007 (109 + 7) in one line.
Sample Input
1 2 2 1
Sample Output
6
Hint
题意
有两个人在玩游戏,一开始分数分别为a和b,每一局,每个人可以获得分数[-k,k]之间,问你A胜过B的方案数有多少种
题解:
dp[i][j]表示第i轮之后,获得j分数的方案数。
显然这个只会和上一轮有关,所以可以滚动数组优化,又显然可以前缀和优化。
然后维护一下DP
最后再枚举A的分数,统计一下答案就好了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 4e5+7;
const int le = 2e5;
const int mod = 1e9+7;
long long a,b,k,t;
long long dp[2][maxn];
long long sum[maxn];
int now=0,pre=1;
int main()
{
scanf("%lld%lld%lld%lld",&a,&b,&k,&t);
dp[now][le]=1;
for(int i=1;i<=t;i++)
{
for(int j=1;j<maxn;j++)
{
sum[j]=dp[now][j]+sum[j-1];
sum[j]%=mod;
}
swap(now,pre);
memset(dp[now],0,sizeof(dp[now]));
for(int j=1;j<maxn;j++)
{
dp[now][j]+=sum[min(maxn-1LL,j+k)]-sum[max(0LL,j-k-1)];
dp[now][j]%=mod;
}
}
for(int j=1;j<maxn;j++)
{
sum[j]=dp[now][j]+sum[j-1];
sum[j]%=mod;
}
long long ans = 0;
for(int j=0;j<maxn;j++)
{
ans += sum[a+j-b-1]%mod*dp[now][j]%mod;
ans%=mod;
}
cout<<(ans+mod)%mod<<endl;
}
Codeforces Round #370 (Div. 2) D. Memory and Scores 动态规划的更多相关文章
- Codeforces Round #370 (Div. 2) D. Memory and Scores DP
D. Memory and Scores Memory and his friend Lexa are competing to get higher score in one popular c ...
- Codeforces Round #370 (Div. 2) E. Memory and Casinos 线段树
E. Memory and Casinos 题目连接: http://codeforces.com/contest/712/problem/E Description There are n casi ...
- Codeforces Round #370 (Div. 2)C. Memory and De-Evolution 贪心
地址:http://codeforces.com/problemset/problem/712/C 题目: C. Memory and De-Evolution time limit per test ...
- Codeforces Round #370 (Div. 2)B. Memory and Trident
地址:http://codeforces.com/problemset/problem/712/B 题目: B. Memory and Trident time limit per test 2 se ...
- Codeforces Round #370 (Div. 2) C. Memory and De-Evolution 水题
C. Memory and De-Evolution 题目连接: http://codeforces.com/contest/712/problem/C Description Memory is n ...
- Codeforces Round #370 (Div. 2) B. Memory and Trident 水题
B. Memory and Trident 题目连接: http://codeforces.com/contest/712/problem/B Description Memory is perfor ...
- Codeforces Round #370 (Div. 2) A. Memory and Crow 水题
A. Memory and Crow 题目连接: http://codeforces.com/contest/712/problem/A Description There are n integer ...
- Codeforces Round #370 (Div. 2) E. Memory and Casinos (数学&&概率&&线段树)
题目链接: http://codeforces.com/contest/712/problem/E 题目大意: 一条直线上有n格,在第i格有pi的可能性向右走一格,1-pi的可能性向左走一格,有2中操 ...
- Codeforces Round #556 (Div. 2) - D. Three Religions(动态规划)
Problem Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 3000 mSec Problem Descripti ...
随机推荐
- bzoj千题计划241:bzoj3864: Hero meet devil
http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...
- Red Pen - 快速高效的获取设计项目的反馈
Red Pen 让设计师能够快速,高效的从你的同事和客户获取反馈.只需要简单的拖放图像到 Red Pen 主页,然后把生成的链接分享给你的同事或者客户.他们打开链接就能看到设计稿,并给予实时的反馈,所 ...
- 高品质的JavaScript
整理书籍内容(QQ:283125476 发布者:M [重在分享,有建议请联系->QQ号]) 养成良好的编程习惯 ##如何避免团队JS冲突 * 避免实用全局变量[可使用匿名函数进行处理]以避免全局 ...
- cordova app 监听物理返回键
物理返回键指的是手机系统自带的返回按钮,通过cordova监听返回按钮操作,可以禁止某些页面的返回操作,以及实现点击两次返回按钮退出应用. var pageUrl = window.location. ...
- mysql双主+keepalived【转】
简单原理 1.在两台服务器上分别部署双主keepalived,主keepalived会在当前服务器配置虚拟IP用于mysql对外提供服务 2.在两台服务器上分别部署主主mysql,用于故障切换 3.当 ...
- android 8.0变更
Android 8.0 行为变更 Android 8.0 除了提供诸多新特性和功能外,还对系统和 API 行为做出了各种变更.本文重点介绍您应该了解并在开发应用时加以考虑的一些主要变更. 其中大部分变 ...
- 测试开发之Django——No2.Django的安装以及项目创建
开发平台:Mac Python版本:3.7 Django版本:2.0.5 一.Django的安装 1.pip安装 输入命令pip install Django==2.0.5 说明:不指定版本,则安装的 ...
- java代码分页
分页类 这个适用情况: 适用于前端页面已提供分页按钮样式的情况 分页规则: 首页,尾页,上页,下页 这四个按钮必定出现,中间分页动态生成5个 如:首 上 2 3 4 5 6 下 尾 public cl ...
- IDEA下利用Jrebel插件实现JFinal项目main方法【热加载】
IDEA下利用Jrebel插件实现JFinal项目main方法[热加载] Jrebel破解办法 https://github.com/ilanyu/ReverseProxy/releases/tag/ ...
- 3种高效的Tags标签系统数据库设计方案分享
需求背景 目前主流的博客系统.CMS都会有一个TAG标签系统,不仅可以让内容链接的结构化增强,而且可以让文章根据Tag来区分.相比传统老式的Keyword模式,这种Tag模式可以单独的设计一个Map的 ...