POJ 3276 Face The Right Way(反转)
|
Face The Right Way
Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect. Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa. Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K. Input Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward. Output Line 1: Two space-separated integers: K and M
Sample Input 7 Sample Output 3 3 Hint For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
|
Problem Description
N头牛排成了一列。每头牛或者向前或者向后。为了让所有的牛都面向前方,农夫约翰买了一台自动转向的机器。这个机器在购买时就必须设定一个数值K,机器每操作一次恰好使K头连续的牛转向。请求出为了让所有牛都能面向前方需要的最少的操作次数M和对应的最小的K。
思路:
首先交换区间反转的顺序对结果是没有影响的,此外,可以知道对同一个区间进行两次以上的反转是多余的。
我们枚举K,然后从左往右,遇到需要反转的就给它反转,然后标记一下区间【i, i+k-1】被反转过。核心点就是在于如何标记能实现O(1)的复杂度。
用一个f[i]数组,f[i]: = 区间[i, i+k-1]进行了反转的话则为1,否则为0。这样,在考虑第i头牛时,如果区间[i-k+1,i-1]f[i]的和为奇数的话,则这头牛的方向与起始方向是相反的
题解:1、5000头牛不是小数目,再怎么也得要n^2的算法,其中,枚举k是需要的,这就有n了,只能想办法给出一个n在O(n)时间内求出最小次数了。
2、对于给定的k,要想O(n)内把次数算出来,即只能扫一遍,一想到的必定是从前往后扫,遇到面朝后的就转头,但这一转牵扯太多,要改太多东西,k一大直接崩溃。
3、对于每次扫描到的第i个点,都至多只能改一次才能保证效率,即只改变化的。将牛的朝向弄成依赖型,即后者依赖于前者,这样在一个区间内[a,b]翻转时,实际上[a+1,b]的依赖关系是没有改变的,改变的只有a,b+1。
4、综上,设置一种关系表示每头牛与前一头牛的朝向,最简单的就是同向与反向的差异,不妨令同向为0,反向为1,为了使得最后都朝前,可以令一头虚拟牛(即0号牛)头朝前,然后第一头牛依赖于它。
5、因此,每次检查时,只需要更改a和a+k位置的牛的依赖关系便可以解决了,最后在检查一下剩余的牛是否全是0就结束了。
详见代码注释
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int d[];
bool f[];
int sum = ;
int n; int solve(int k)
{
memset(f, , sizeof(f));
int i;
sum = ;
int res = ;
for (i = ; i + k - <= n; i++)
{
if (i - k >= ) sum -= f[i - k];//只需统计i-k+1到i即可,这之间翻转会影响到i,i-k为起点翻转k个,只能影响到第i-1个
if ((d[i] + sum) % !=)
{//包含了两种情况,1,d[i]为奇1,被翻了偶数次,仍未1。2,d[i]为偶0,被翻了奇数次,为1了
res++;
f[i] = ;//i为B,需要反转
}
sum += f[i];
} for (i; i <= n; i++)//检查剩下的牛是否有朝后的情况,i初始为=n-k+2
{
if (i - k >= ) sum -= f[i - k];
if ((d[i] + sum) % !=) return -;//剩下的还有为1的,没办法翻了
}
return res;
} int main()
{
cin >> n;
char a;
int i;
int k;
for (i = ; i <= n; i++)
{
cin >> a;
if (a == 'B') d[i] = ;
else d[i] = ;
}
int M = inf;
int K = inf;
for (k = ; k <= n; k++)//题目说从1开始
{
int m = solve(k);
if (m != - && M > m)//更新
{
M = m;
K = k;
}
}
cout << K << " " << M << endl;
return ;
}
POJ 3276 Face The Right Way(反转)的更多相关文章
- POJ 3276 Face The Right Way 反转
大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- poj 3276(反转)
传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- Enum:Face The Right Way(POJ 3276)
面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...
- poj 3185 The Water Bowls(反转)
Description The cows have a line of water bowls water bowls to be right-side-up and thus use their w ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- Face The Right Way POJ - 3276 (开关问题)
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6707 Accepted: 312 ...
- Face The Right Way POJ - 3276(区间)
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, li ...
随机推荐
- Django-自定义分页组件
1.封装的分页代码: class PageInfo(object): def __init__(self,current_page,all_count,per_page,base_url,show_p ...
- 201621123006 《Java程序设计》第2周学习总结
1. 本周学习总结 以几个关键词描述本周的学习内容.并将关键词之间的联系描述或绘制出来. 原则:少而精,自己写.即使不超过5行也可,但请一定不要简单的复制粘贴. java数据类型:java数据类型分为 ...
- Linux:vim环境设置
vim环境设置 vim的环境设置在/etc/vimrc的这个文件中,不过不建议直接修改该配置文件.但是可以修改~/.vimrc文件,默认是不存在的,要手动创建并写入设置值. set hlsearch ...
- Windows 2003/XP 连接vmware 5.5错误
参考文章:http://www.mamicode.com/info-detail-7253.html 补丁下载地址参考: http://support.microsoft.com/hotfix/KBH ...
- HAWQ + MADlib 玩转数据挖掘之(一)——安装
一.MADlib简介 MADlib是Pivotal公司与伯克利大学合作的一个开源机器学习库,提供了精确的数据并行实现.统计和机器学习方法对结构化和非结构化数据进行分析,主要目的是扩展数据库的分析能力, ...
- GitHub原来也可以用SVN客户端的.
不知道是不是自己真的太宅了. 一直以为只能用git client 来clone github工程的. 偶然今日发现还可以用 SVN 来下载的. 果断一试. 太好用了. 这回windows 上不用纠结 ...
- 如何从github下载项目的源代码,包含git客户端,直接下载,vs下载
有好多小伙伴可能刚刚接触github,还不知道如果和github下载项目,此处写个博客统一的声明.从多种方式下载源代码,加深对git的理解. 首先先解释下git的含义,git是一个源代码的管理工具,通 ...
- Linux服务器运行环境搭建(二)——Redis数据库安装
官网地址:http://redis.io/ 官网下载地址:http://redis.io/download 1. 下载Redis源码(tar.gz),并上传到Linux 2. 解压缩包:tar zxv ...
- Android 实现两屏幕互相滑动
Android 实现两屏幕互相滑动 下文来自: http://blog.csdn.net/song_shi_chao/article/details/7081664 ----------------- ...
- onenote的笔记本在windows10保存的路径
onenote挺好用的,支持windows,android,mac等操作系统,完全符合我的需求,并且还没有广告.但是,在删除笔记本的时候,感觉比较费事,因为他没有配置告诉我们文件具体放在哪个路径下了, ...