HAOI2010 最长公共子序列
题目链接:戳我
30分暴力。。。。暴力提取子序列即可qwqwq
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#define MAXN 5010
using namespace std;
int lena,lenb,n,ans,cnt;
int dp[MAXN][MAXN];
char a[MAXN],b[MAXN],cur[MAXN],pre[MAXN];
map<string,int>sum;
inline void init(int pos)
{
if(cnt==n)
{
string s;
for(int i=1;i<=cnt;i++) s+=pre[i];
sum[s]++;
return;
}
if(pos>=lenb) return;
for(int i=pos+1;i<=lenb;i++)
{
pre[++cnt]=b[i];
init(i);
cnt--;
}
}
inline void solve(int pos)
{
if(cnt==n)
{
string s;
for(int i=1;i<=cnt;i++) s+=cur[i];
ans+=sum[s];
return;
}
if(pos>=lena) return;
for(int i=pos+1;i<=lena;i++)
{
cur[++cnt]=a[i];
solve(i);
cnt--;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
#endif
scanf("%s%s",a+1,b+1);
lena=strlen(a+1)-1;
lenb=strlen(b+1)-1;
for(int i=1;i<=lena;i++)
{
for(int j=1;j<=lenb;j++)
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(a[i]==b[j]) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
}
n=dp[lena][lenb];
init(0);
cnt=0;
solve(0);
printf("%d\n%d\n",n,ans);
return 0;
}
考虑满分算法?题解的话强烈安利Flash_hu dalao的题解
第一问很好做,也就是f[i][j]表示第一个序列到第i位,第二个序列到第j位,最长的公共子序列的长度。f[i][j]可以从f[i-1][j]和f[i][j-1]转移过来,如果a[i]==b[j]的话还可以从f[i-1][j-1]+1转移过来。
对于第二问,我们设sum[i][j]表示第一个序列到第i位,第二个序列到第j位,最长公共子序列长度为f[i][j]的子序列个数。显然如果f[i-1][j]f[i][j]的话,我们是可以从sum[i-1][j]转移过来的,f[i][j-1]f[i][j]同理。额外的,如果f[i-1][j-1]+1==f[i][j]时,我们还可以累加sum[i-1][j-1]的答案。
就这样就结束了吗?不对,你会发现W掉了。为什么呢?
这是因为如果当f[i-1][j-1]==f[i][j]的时候,sum[i-1][j-1]的值对sum[i-1][j]和sum[i][j-1]各贡献了一次。而我们累加到sum[i][j]的时候相当于重算了一次,所以还要记得减去哦qwqwq
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 5010
#define mod 100000000
using namespace std;
int lena,lenb;
int f[2][MAXN],sum[2][MAXN];
char a[MAXN],b[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
#endif
scanf("%s%s",a+1,b+1);
lena=strlen(a+1)-1,lenb=strlen(b+1)-1;
for(int i=0;i<=lenb;i++) sum[0][i]=1;
sum[1][0]=1;
for(int i=1;i<=lena;i++)
{
for(int j=1;j<=lenb;j++)
{
sum[1][j]=0;
f[1][j]=max(f[1][j-1],f[0][j]);
if(a[i]==b[j]) f[1][j]=max(f[1][j],f[0][j-1]+1);
if(a[i]==b[j]&&f[0][j-1]+1==f[1][j]) sum[1][j]+=(sum[1][j]+sum[0][j-1])%mod;
if(f[1][j-1]==f[1][j]) sum[1][j]=(sum[1][j]+sum[1][j-1])%mod;
if(f[0][j]==f[1][j]) sum[1][j]=(sum[1][j]+sum[0][j])%mod;
if(a[i]!=b[j]&&f[0][j-1]==f[1][j]) sum[1][j]=(sum[1][j]+mod-sum[0][j-1])%mod;
}
swap(f[0],f[1]),swap(sum[0],sum[1]);
}
printf("%d\n%d\n",f[0][lenb],sum[0][lenb]);
return 0;
}
HAOI2010 最长公共子序列的更多相关文章
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- bzoj:2423: [HAOI2010]最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- LG2516 【[HAOI2010]最长公共子序列】
前言 感觉这几篇仅有的题解都没说清楚,并且有些还是错的,我再发一篇吧. 分析 首先lcs(最长公共子序列)肯定是板子.但这题要求我们不能光记lcs是怎么打的,因为没这部分分,并且另外一个方程的转移要用 ...
- bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】
设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
随机推荐
- git命令用法
git svn 说明 git pull svn update git add 要提交的文件名 svn add git rm svn rm,del git commit -m '备注一下提 ...
- 大数据Hadoop生态圈:Pig和Hive
前言 Pig最早是雅虎公司的一个基于Hadoop的并行处理架构,后来Yahoo将Pig捐献给Apache的一个项目,由Apache来负责维护,Pig是一个基于 Hadoop的大规模数据分析平台. Pi ...
- re模块之re.match
re模块--python 正则表达式 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达 ...
- jsp table td自动换行
<TABLE style="word-wrap: break-word; word-break: break-all;">
- Mysql设置auto_increment_increment和auto_increment_offset
查看与设置: show variables like '%auto_inc%'; show session variables like '%auto_inc%'; -- //session会话变量 ...
- Anaconda3 ubuntu18.04
luo@luo-All-Series:~/MyFile/Anaconda3$ luo@luo-All-Series:~/MyFile/Anaconda3$ luo@luo-All-Series:~/M ...
- SQL 数据库 学习 007 通过一个示例简单介绍什么是字段、属性、列、元组、记录、表、主键、外键 (上)
SQL 数据库 学习 007 通过一个示例简单介绍什么是字段.属性.列.元组.记录.表.主键.外键 (上) 我们来介绍一下:数据库是如何存储数据的. 数据库是如何存储数据的 来看一个小例子 scott ...
- c# dynamic的属性是个变量
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- python 网络编程 TCP/IP socket UDP
TCP/IP简介 虽然大家现在对互联网很熟悉,但是计算机网络的出现比互联网要早很多. 计算机为了联网,就必须规定通信协议,早期的计算机网络,都是由各厂商自己规定一套协议,IBM.Apple和Micro ...
- Mac下在zsh中配置adb命令
Mac下自带的终端默认黑白色的,对于一个技术宅来说不能忍啊.然后换成了iTerm,安装上了zsh,安装后界面如下: 这里写图片描述 但是常用的adb命令却找不到了,还向github上提了issue,下 ...