IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Inti Sets
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/inti-sets
In order to motivate his Peruvian students, a teacher includes words in the Quechua language in his math class.
Today, he defined a curious set for a given positive integer N. He called this set, an Inti set, and defined it as the set of all positive integer numbers that have the number 1 as their single common positive divisor with number N.
The math class about Inti sets was amazing. After class, the students try to challenge to teacher. They each ask questions like this: "Could you tell me the sum of all numbers, between A and B (inclusive), that are in the Inti set of N?"
Since the teacher is tired and he's sure that you are the best in class, he wants to know if you can help him.
Input Format
The first line of input contains an integer Q, 1 ≤ Q ≤ 20, representing the number of students. Each of the next Qlines contain three space-separated integers N, A and B, which represent a query.
Constraints
1 ≤ A ≤ B ≤ N ≤ 10^12
Output Format
The output is exactly Q lines, one per student query. For each query you need to find the sum of all numbers between A and B, that are in the Inti set of N, and print the sum modulo 1000000007.
Sample Input
2
12 5 10
5 1 4
Sample Output
12
10
Explanation
In the sample input, Q = 2, so you have to answer two questions:
In the first question N = 12, A = 5 and B = 10. So you have to find the sum of all numbers between 5 and 10, that are in the Inti set of 12.
Inti set ( 12 ) = { 1, 5, 7, 11, 13, ... }
2 and 4 are not in the Inti set (12) because 12 and these numbers are also divisible by 2.
3 and 9 are not in the Inti set (12) because 12 and these numbers are also divisible by 3.
The numbers in the Inti set, which are in the query's range, are 5 and 7, so answer is ( 5 + 7 ) MOD 1000000007 = 12
In the second question, the numbers in the Inti set of 5 between 1 and 4 are: 1, 2, 3, 4; so the answer is ( 1 + 2 + 3 + 4 ) MOD 1000000007 = 10
题目解析
显然直接求和会超时,可以用容斥原理解决。
用sumOver(5, 10, 1)表示区间[5,10]内为1倍数的数
由于12的质因数为2, 3
sum(区间[5, 10]内与12互质的数) = sumOver(5, 10, 1) - sumOver(5, 10, 2) - sumOver(5, 10, 3) + sumOver(5, 10, 6)
可以通过遍历区间[0,2^2)的每一个数来遍历所有因式的组合,
二进制数形式每一位代表是否存在该因数,1代表存在,0代表不存在,
因数的个数为偶数意味着和需要加上,为奇数意味着需要减去
00代表因数为1, 01代表因数为3, 10代表因数为2, 11代表因数为6
注意需要使用取余运算避免溢出。
复杂度分析

如果有c个质因数,那么需要求2^c个数的和
求每一个和需要常数时间O(1)
数N,至多只有一个大于sqrt(N)的质因数,因此质因数的个数不超过log(sqrt(N))+1
总复杂度为O(sqrt(N))
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; #define MAXN 1000000007 // 区间[a,b]内,所有为x倍数数的和
long long sumOver(long long a, long long b, long long x) {
long long aa = (a + x - ) / x; // 上取整
long long bb = b / x; // 下取整 long long sum; // sum会超过long long的表示范围
if( (aa + bb) % == ) {
sum = (((aa + bb) / ) % MAXN) * ((bb - aa + ) % MAXN);
} else {
sum = ((aa + bb) % MAXN) * (((bb - aa + ) / ) % MAXN);
} return ((sum % MAXN) * (x % MAXN)) % MAXN;
} // 求不大于max的所有素数
// 使用筛选法
void getPrimes(vector<long long> &primes, long long max) {
vector<bool> nums(max, );
for(long long i=; i<max; i++) {
if(nums[i] == false) {
primes.push_back(i);
for(int n=*i; n<max; n+=i) {
nums[n] = true;
}
}
}
} // 对数x进行质因数分解
void getFactors(long long x, vector<long long> &factors, vector<long long> &primes) {
int i = ;
while(x > && i < primes.size()) {
if(x % primes[i] == ) {
factors.push_back(primes[i]);
while(x % primes[i] == ) x /= primes[i];
}
i++;
}
// 小于10^12的数最对有一个大于10^6的质因数
if(x > ) {
factors.push_back(x);
}
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
vector<long long> primes;
getPrimes(primes, ); int T;
cin >> T;
for(int t=; t<T; t++) {
long long x, a, b;
cin >> x >> a >> b;
long long result = ;
vector<long long> factors;
getFactors(x, factors, primes); int factorCount = factors.size();
long long binMax = (long long) << factorCount; // 遍历所有的质因数组合
for(long long bin=; bin<binMax; bin++) {
long long factor = ;
int factorC = ;
for(int i=; i<factorCount; i++) {
if( (bin >> i) & ) {
factor *= factors[i];
factorC ++;
}
} if(factorC % == ) {
result = (result + sumOver(a, b, factor) + MAXN) % MAXN;
}
else {
result = (result - sumOver(a, b, factor) + MAXN) % MAXN;
}
} cout << result << endl;
} return ;
}
IEEEXtreme 10.0 - Inti Sets的更多相关文章
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
随机推荐
- pycrypto 安装
https://www.dlitz.net/software/pycrypto/ 下载pycrypto-2.6.1.tar.gz,解压后 python setup.py build python se ...
- C++之基础知识20170830
/*************************************************************************************************** ...
- 阿里云 centos7 tomcat 启动巨慢的解决方法(几分钟)
方法一: 通过修改Tomcat启动文件-Djava.security.egd=file:/dev/urandom 通过修改JRE中的java.security文件securerandom.source ...
- Linux遇到的两个问题
编译C++的和编译C语言的命令不同. 编译C++,应当先安装g++. 然后可以用#g++ filename.cpp -o filename 进行编译 编译C语言是用#gcc filename.c -o ...
- 组合计数 && Stirling数
参考: http://blog.csdn.net/qwb492859377/article/details/50654627 http://blog.csdn.net/acdreamers/artic ...
- Install Terraform on Windows, Linux and Mac OS
Step-by-step tutorial of how to download and install Terraform on Windows, Linux and Mac OS. Terrafo ...
- 微信JSSDK权限签名申请
前提: 1.绑定域名 先登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. 里边有说明(这里提示一点:需要把当前公众号的验证文件放到指定目录下) 2.需要参数: APPID. ...
- KeyDown,KeyPress和KeyUp详解(转)
1.按键的类型 Windows窗体将键盘输入标识为由按位Keys枚举表示的虚拟键代码.使用Keys枚举,可以综合一系列按键以生成单个值,这些值与WM_KEYDOWN和WM_SYSKEYDOWNWind ...
- Linux centos7下设置Tomcat开机自启动
1,centos7 使用 systemctl 替换了 service命令 参考:redhat文档: https://access.redhat.com/documentation/en-US/Red_ ...
- HDU 2608 底数优化分块 暴力
T(n) as the sum of all numbers which are positive integers can divied n. and S(n) = T(1) + T(2) + T( ...