IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Inti Sets
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/inti-sets
In order to motivate his Peruvian students, a teacher includes words in the Quechua language in his math class.
Today, he defined a curious set for a given positive integer N. He called this set, an Inti set, and defined it as the set of all positive integer numbers that have the number 1 as their single common positive divisor with number N.
The math class about Inti sets was amazing. After class, the students try to challenge to teacher. They each ask questions like this: "Could you tell me the sum of all numbers, between A and B (inclusive), that are in the Inti set of N?"
Since the teacher is tired and he's sure that you are the best in class, he wants to know if you can help him.
Input Format
The first line of input contains an integer Q, 1 ≤ Q ≤ 20, representing the number of students. Each of the next Qlines contain three space-separated integers N, A and B, which represent a query.
Constraints
1 ≤ A ≤ B ≤ N ≤ 10^12
Output Format
The output is exactly Q lines, one per student query. For each query you need to find the sum of all numbers between A and B, that are in the Inti set of N, and print the sum modulo 1000000007.
Sample Input
2
12 5 10
5 1 4
Sample Output
12
10
Explanation
In the sample input, Q = 2, so you have to answer two questions:
In the first question N = 12, A = 5 and B = 10. So you have to find the sum of all numbers between 5 and 10, that are in the Inti set of 12.
Inti set ( 12 ) = { 1, 5, 7, 11, 13, ... }
2 and 4 are not in the Inti set (12) because 12 and these numbers are also divisible by 2.
3 and 9 are not in the Inti set (12) because 12 and these numbers are also divisible by 3.
The numbers in the Inti set, which are in the query's range, are 5 and 7, so answer is ( 5 + 7 ) MOD 1000000007 = 12
In the second question, the numbers in the Inti set of 5 between 1 and 4 are: 1, 2, 3, 4; so the answer is ( 1 + 2 + 3 + 4 ) MOD 1000000007 = 10
题目解析
显然直接求和会超时,可以用容斥原理解决。
用sumOver(5, 10, 1)表示区间[5,10]内为1倍数的数
由于12的质因数为2, 3
sum(区间[5, 10]内与12互质的数) = sumOver(5, 10, 1) - sumOver(5, 10, 2) - sumOver(5, 10, 3) + sumOver(5, 10, 6)
可以通过遍历区间[0,2^2)的每一个数来遍历所有因式的组合,
二进制数形式每一位代表是否存在该因数,1代表存在,0代表不存在,
因数的个数为偶数意味着和需要加上,为奇数意味着需要减去
00代表因数为1, 01代表因数为3, 10代表因数为2, 11代表因数为6
注意需要使用取余运算避免溢出。
复杂度分析
如果有c个质因数,那么需要求2^c个数的和
求每一个和需要常数时间O(1)
数N,至多只有一个大于sqrt(N)的质因数,因此质因数的个数不超过log(sqrt(N))+1
总复杂度为O(sqrt(N))
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; #define MAXN 1000000007 // 区间[a,b]内,所有为x倍数数的和
long long sumOver(long long a, long long b, long long x) {
long long aa = (a + x - ) / x; // 上取整
long long bb = b / x; // 下取整 long long sum; // sum会超过long long的表示范围
if( (aa + bb) % == ) {
sum = (((aa + bb) / ) % MAXN) * ((bb - aa + ) % MAXN);
} else {
sum = ((aa + bb) % MAXN) * (((bb - aa + ) / ) % MAXN);
} return ((sum % MAXN) * (x % MAXN)) % MAXN;
} // 求不大于max的所有素数
// 使用筛选法
void getPrimes(vector<long long> &primes, long long max) {
vector<bool> nums(max, );
for(long long i=; i<max; i++) {
if(nums[i] == false) {
primes.push_back(i);
for(int n=*i; n<max; n+=i) {
nums[n] = true;
}
}
}
} // 对数x进行质因数分解
void getFactors(long long x, vector<long long> &factors, vector<long long> &primes) {
int i = ;
while(x > && i < primes.size()) {
if(x % primes[i] == ) {
factors.push_back(primes[i]);
while(x % primes[i] == ) x /= primes[i];
}
i++;
}
// 小于10^12的数最对有一个大于10^6的质因数
if(x > ) {
factors.push_back(x);
}
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
vector<long long> primes;
getPrimes(primes, ); int T;
cin >> T;
for(int t=; t<T; t++) {
long long x, a, b;
cin >> x >> a >> b;
long long result = ;
vector<long long> factors;
getFactors(x, factors, primes); int factorCount = factors.size();
long long binMax = (long long) << factorCount; // 遍历所有的质因数组合
for(long long bin=; bin<binMax; bin++) {
long long factor = ;
int factorC = ;
for(int i=; i<factorCount; i++) {
if( (bin >> i) & ) {
factor *= factors[i];
factorC ++;
}
} if(factorC % == ) {
result = (result + sumOver(a, b, factor) + MAXN) % MAXN;
}
else {
result = (result - sumOver(a, b, factor) + MAXN) % MAXN;
}
} cout << result << endl;
} return ;
}
IEEEXtreme 10.0 - Inti Sets的更多相关文章
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
随机推荐
- 在VS2010中使用Git【图文】
http://blog.csdn.net/laogong5i0/article/details/10974285 在之前的一片博客<Windows 下使用Git管理Github项目>中简单 ...
- 图像处理之均值滤波介绍及C算法实现
1 均值滤波介绍 滤波是滤波是将信号中特定波段频率滤除的操作,是从含有干扰的接收信号中提取有用信号的一种技术. 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临 ...
- python学习(十一)测试和调试
最近学习了python的错误处理和几种测试方法 1 try except 可以通过try except方式捕捉异常 try: print('try...') r = 10/0 print('resul ...
- 配置pdo 的用户和密码,
注意:要进入mysql命令行来操作~~~~ grant all on *.* to pdo_root@'%' identified by 'pdo_pwd'; flush privileges
- 51 nod 1109 01组成的N的倍数
1109 01组成的N的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给定一个自然数N,找出一个M,使得M > 0且M是N的倍数,并且 ...
- Parencodings(模拟)
ZOJ Problem Set - 1016 Parencodings Time Limit: 2 Seconds Memory Limit: 65536 KB Let S = s1 s2 ...
- autofac 在.net core 与经典asp.net中的差异
前提: Install-Package Microsoft.Extensions.DependencyInjection 特點: 使用nstancePerLifetimeScope代替Instance ...
- 数据库 插入时 碰到NULL报错判断的一种方法(技巧)
//public static object ToDBNull(object value) 判断插入数据的时候个别参数不能为空的时候做的判断方法 //{ // if (value == null) / ...
- 【BZOJ2882】【字符串的最小表示】工艺
题目描述 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品.但是方块现在是乱的,而且由于机器的要求,他们只能做到把这个工艺品最左边的方 ...
- Sublime快捷键(一)
最近在工作中,遇到的sublime的快捷键,以后再工作中用到的我会稍后增加的~ 快捷键: 1.切换标签页: Ctrl + Tab 切换标签页: Ctrl + Shift + Tab 返回刚切 ...