原创博文,转载请注明出处!

1.ROC曲线介绍

  • ROC曲线适用场景
    • 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价

  • ROC曲线的意义
    • TPR的增长是以FPR的增长为代价

2.ROC曲线绘制

  • 纵坐标为TPR
    • TPR(True Positive Rate)真正确率,即模型正确识别正例的比例,TPR=TP/(TP+FN)
  • 横坐标为FPR
    • FPR(False Positive Rate)假正确率,即模型错误将反例识别为正例的比例,FPR=FP/(FP+TN)
  • ROC曲线的绘制过程
    • 给定m个正例和n个反例。首先,根据学习器预测结果对样本排序;然后,先把所有样本均预测为反例,再一次将每个样本划分为正例(阈值从大到小的过程)。

3.sklearn中roc曲线

  1 from sklearn.metrics import roc_curve
2 tpr,fpr,thresholds = roc_curve(y_test,y_pred)
3
4 import matplotlib.pyplot as plt
5 plt.plot(fpr, tpr)
6 plt.xlim([0.0, 1.0])
7 plt.ylim([0.0, 1.0])
8 plt.title('ROC curve for diabetes classifier')
9 plt.xlabel('False Positive Rate (1 - Specificity)')
10 plt.ylabel('True Positive Rate (Sensitivity)')
11 plt.grid(True)

【sklearn】性能度量指标之ROC曲线(二分类)的更多相关文章

  1. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  2. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  3. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  4. 机器学习实战笔记(Python实现)-07-分类性能度量指标

    1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正 ...

  5. 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC

    文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...

  6. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  7. R语言︱ROC曲线——分类器的性能表现评价

    笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...

  8. ROC曲线,AUC面积

    AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本, ...

  9. 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC

    评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...

随机推荐

  1. windows批量删除ip

    cmd下输入如下命令第一步:netsh -c int ip dump >c:\ip.txt在C盘根目录看到一个ip.txt的文件,内容为当前网卡的设置信息,为了能更直观的看清楚IP的设置信息. ...

  2. linux下安装sphinx

    1.下载sphinx源码包 上面截图的这个网址   复制链接地址   在putty终端使用:wget http://sphinxsearch.com/files/sphinx-2.3.1-beta.t ...

  3. mybatis整合ehcache

    知识点:mybatis整合encache缓存框架,缓存从数据库中,查询的数据,不使用mybatis自带的二级缓存 补充:github上Mybatis Ehcache 适配器包说明地址:http://w ...

  4. layer弹出层的关闭及父页面的刷新问题

    当在主页面执行添加或修改时,用弹出层是比较好的选择,如何关闭弹出层并对父级页面进行操作呢 首先在父级页面中打开一个添加页面(弹出层) 在添加页面的表单提交函数中添加如下代码: function for ...

  5. mysql 跨库查询问题

    MySQL实现跨服务器查询 https://blog.csdn.net/LYK_for_dba/article/details/78180444 mysql> create database l ...

  6. html和JavaScript,用户点击浏览器后退按钮,或者返回上一步自动刷新方式

    浏览器用户返回上一步,自动刷新 方式一. <input type="hidden" id="refreshed" value="no" ...

  7. es6之Iterator

    1.任何数据结构只要部署了Iterator接口(本质是一个指针对象),也就是部署了Symbol.iterator属性,便可以完成遍历操作:数组原生就具备Iterator接口,就可以用for...of遍 ...

  8. PHP返回32位与16位的md5加密值

    字符串“123456”,经过md5算法加密之后是 32位: e10adc3949ba59abbe56e057f20f883e16位: 49ba59abbe56e057 PHP自带的 md5() 函数, ...

  9. Android6.0------权限申请RxPermissions

    前面写了Android6.0权限介绍和权限单个,多个申请,用的是纯Java代码,本文主要说的是借助第三方库来实现权限申请. 借助第三方库 RxPermissions来申请6.0权限. RxPermis ...

  10. MySQL修改字符集编码

    通过修改字符集编码为utf8,彻底解决中文问题. 一. 登录MySQL查看用SHOW VARIABLES LIKE 'character%':下字符集,显示如下: +----------------- ...