很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化.

建模方式步骤:

1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w;

2.对所有相邻的点加边id(i)->id(i+1),容量为正无穷,费用为0;

3.建立源点汇点,由源点s向最左侧的点加边,容量为K,费用为0,由最右侧的点向汇点加边,容量为K,费用为0

4.跑出最大流后,最小费用取绝对值就是能获得的最大权

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge{
int to, next, cap, flow, cost;
} edge[MAXM];
int head[MAXN], tol;
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N;
void init(int n)
{
N = n;
tol = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v, int cap, int cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
} bool spfa(int s, int t){
queue<int> q;
for (int i = 0; i < N; i++){
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while (!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].to; if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
}
if (pre[t] == -1) return false;
else return true;
} int minCostMaxflow(int s, int t, int &cost){
int flow = 0;
cost = 0;
while (spfa(s, t)){
int Min = INF;
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
}
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
edge[i].flow += Min;
edge[i ^ 1].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
return flow;
} map<int,int> dp;
struct edg{
int u,v,w;
}ed[MAXN]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,N,M,K,u,v,w;
scanf("%d",&T);
map<int,int> ::iterator it;
while(T--){
dp.clear();
scanf("%d %d %d",&N, &K, &M);
for(int i=1;i<=M;++i){
scanf("%d %d %d",&u,&v,&w);
v++;
ed[i] = (edg){u,v,w};
dp[u] = dp[v] = 1;
}
int cnt=0;
for(it = dp.begin();it!=dp.end();++it){
int id = it->first;
dp[id] = ++cnt;
}
init(cnt+5);
int s = 0,t = cnt+1;
addedge(s,1,K,0);
addedge(cnt,t,K,0);
for(int i=1;i<cnt;++i){
addedge(i,i+1,INF,0);
}
for(int i=1;i<=M;++i){
u = ed[i].u, v = ed[i].v;
u = dp[u], v =dp[v];
addedge(u,v,1,-ed[i].w);
}
int cost;
minCostMaxflow(s,t,cost);
printf("%d\n",-cost);
}
return 0;
}

ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)的更多相关文章

  1. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  2. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 B题 Mathematical Curse

    A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics ...

  4. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  5. ACM-ICPC 2018 焦作赛区网络预赛J题 Participate in E-sports

    Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 K题 Transport Ship

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  7. ACM-ICPC 2018 焦作赛区网络预赛 L 题 Poor God Water

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  8. ACM-ICPC 2018 焦作赛区网络预赛 I题 Save the Room

    Bob is a sorcerer. He lives in a cuboid room which has a length of AA, a width of BB and a height of ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 H题 String and Times(SAM)

    Now you have a string consists of uppercase letters, two integers AA and BB. We call a substring won ...

随机推荐

  1. 关于 AfxSocketInit()

    一般来说 WASAtarup() 是应用程序调用的Windows Sockets dll的第一个函数,在调用任何Winsock Api之前,必须调用WSAStartup()进行初始化,最后调用WSAC ...

  2. powershell---高级函数的介绍

    https://guhuajun.wordpress.com/2009/05/11/windows-powershell-v2-介绍(5)-高级函数(上)/ https://guhuajun.word ...

  3. log4net写txt日志

    1.配置: <configSections>节点下添加: <section name="log4net" type="log4net.Config.Lo ...

  4. switch语句相关

    Cannot switch on a value of type long. Only convertible int values, strings or enum variables are pe ...

  5. Excel 一个工作表进行按行数拆分

    1. 如下Excel表,总共有120多行数据,如何将以50行数据为一个工作表进行拆分 Sub ZheFenSheet() Dim r, c, i, WJhangshu, WJshu, bt As Lo ...

  6. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  7. 【BZOJ2973】石头游戏 矩阵乘法

    [BZOJ2973]石头游戏 Description 石头游戏的规则是这样的. 石头游戏在一个n行m列的方格阵上进行.每个格子对应了一个编号在0~9之间的操作序列. 操作序列是一个长度不超过6且循环执 ...

  8. oracle如何给指定用户修改密码?

    1.用system用户登录, 2.执行如下sql: alter user 用户名 identified by 新密码; 比如alter user scott identified by 123456; ...

  9. 解决<pre>标签里的文本换行(兼容IE, FF和Opera等)

      我们都知道<pre> 标签可定义预格式化的文本,一个常见应用就是用来表示计算机的源代码.被包围在 pre 元素中的文本通常会保留空格和换行符,但不幸的是,当你在<pre>标 ...

  10. spring boot 加载jsp

    1.spring boot启动类继承SpringBootServletInitializer ,并且重写configure方法 package com.springapp.mvc;import jav ...