题目:

Problem D. Great Again
Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 512 megabytes
The election in Berland is coming. The party United Berland is going to use its influence to win them
again. The crucial condition for the party is to win the election in the capital to show the world that the
protests of opposition in it are inspired by external enemies.
The capital of Berland consists of only one long road with n people living alongside it. United Berland
has a lot of informers, so they know for each citizen whether he is going to attend the election, and if yes,
who is he going to vote for: the ruling party or the opposition.
United Berland has a vast soft power, so they can lobby the desired distribution of districts. Every district
should be a consecutive segment of the road of length between l and r inclusive. Each citizen must be
assigned to exactly one district. The votes are counted in each district separately, and the parties receive
one point for each district, where it receives strictly more votes than the other party. If the parties got
equal result in this district, no one gets its vote. United Berland is going to create the distribution that
maximizes the difference of its points and points of the opposition, and you are asked to compute this
value.
Input
The first line of the input contains three positive integers n, l, r (1 ≤ n ≤ 300 000, 1 ≤ l ≤ r ≤ n) — the
number of citizens in the capital, the lower and the upper bounds on the possible length of a district.
The second line contains n integers a1; a2; : : : ; an (ai 2 f-1; 0; 1g), denoting the votes of the citizens. 1
means vote for the ruling party, -1 means vote for opposition, 0 means that this citizen is not going to
come to the elections.
Output
If there is no way to divide the road into districts of lengths between l and r, print “Impossible” (without
quotes).
Otherwise, print one integer — the maximum possible difference between the scores of United Berland
and the opposition in a valid distribution of citizens among voting districts.
Examples

standard input standard output
5 1 5
1 -1 0 -1 1
1
5 2 3
-1 1 -1 1 -1
-1
6 1 1
1 -1 -1 -1 -1 -1
-4
5 3 3
1 1 1 1 1
Impossible

Note
In the first sample, the optimal division of districts is f1g; f2; 3; 4g; f5g.
In the second sample, the optimal division is f1; 2g; f3; 4; 5g.
In the third sample, there is only one possible division.
There is no way to divide 5 in segments of length 3, so in the fourth sample the answer is “Impossible”.

思路:

  DP:dp[i]=max{dp[j]+f[j+1][i]},(i-l+1<=j<=l-r+1)

  现在难点是怎么做到快速转移。(f[j+1][i]表示区间[j+1,i]的贡献)

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=3e5+;
const int mod=1e9+; int n,tl,tr,py,sum[K],dp[K],v[K*];
priority_queue<PII>q[K*];
int update(int o,int l,int r,int pos,int x)
{
if(l==r) return v[o]=x;
int mid=l+r>>;
if(pos<=mid) update(o<<,l,mid,pos,x);
else update(o<<|,mid+,r,pos,x);
v[o]=max(v[o<<],v[o<<|]);
}
int query(int o,int l,int r,int nl,int nr)
{
if(l==nl&&r==nr) return v[o];
int mid=l+r>>;
if(nr<=mid) return query(o<<,l,mid,nl,nr);
else if(nl>mid) return query(o<<|,mid+,r,mid+,nr);
return max(query(o<<,l,mid,nl,mid),query(o<<|,mid+,r,mid+,nr));
}
void add(int x)
{
if(x<) return ;
int fx=sum[x]+n+;
if(q[fx].size()==||q[fx].top().first<dp[x])
update(,,*n+,fx,dp[x]);
q[fx].push(MP(dp[x],x));
}
void del(int x)
{
if(x<) return;
int fx=sum[x]+n+;
while(q[fx].size()&&q[fx].top().second<=x) q[fx].pop();
if(q[fx].size()==)
update(,,*n+,fx,-mod);
else
update(,,*n+,fx,q[fx].top().first);
}
int main(void)
{
scanf("%d%d%d",&n,&tl,&tr);
for(int i=,mx=n*+;i<=mx;i++) v[i]=-mod;
for(int i=,x;i<=n;i++) scanf("%d",&x),sum[i]=sum[i-]+x;
for(int i=;i<=n;i++)
{
del(i-tr-);add(i-tl);
int q1=query(,,*n+,,sum[i]-+n+);
int q2=query(,,*n+,sum[i]+n+,sum[i]+n+);
int q3=query(,,*n+,sum[i]++n+,n+n+);
if(q1==q2&&q2==q3&&q1==-mod)
dp[i]=-mod;
else
dp[i]=max(max(q1+,q2),q3-);
}
if(dp[n]==-mod) printf("Impossible\n");
else printf("%d",dp[n]);
return ;
}

XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem D. Great Again的更多相关文章

  1. XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem K. Piecemaking

    题目:Problem K. PiecemakingInput file: standard inputOutput file: standard outputTime limit: 1 secondM ...

  2. 【分块】【暴力】XVII Open Cup named after E.V. Pankratiev Grand Prix of Moscow Workshops, Sunday, April 23, 2017 Problem I. Rage Minimum Query

    1000w的数组,一开始都是2^31-1,然后经过5*10^7次随机位置的随机修改,问你每次的全局最小值. 有效的随机修改的期望次数很少,只有当修改到的位置恰好是当前最小值的位置时才需要扫一下更新最小 ...

  3. XVII Open Cup named after E.V. Pankratiev. Grand Prix of America (NAIPC-2017)

    A. Pieces of Parentheses 将括号串排序,先处理会使左括号数增加的串,这里面先处理减少的值少的串:再处理会使左括号数减少的串,这里面先处理差值较大的串.确定顺序之后就可以DP了. ...

  4. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of SPb

    A. Base $i - 1$ Notation 两个性质: $2=1100$ $122=0$ 利用这两条性质实现高精度加法即可. 时间复杂度$O(n)$. #include<stdio.h&g ...

  5. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Siberia

    1. GUI 按题意判断即可. #include<stdio.h> #include<iostream> #include<string.h> #include&l ...

  6. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Peterhof

    A. City Wall 找规律. #include<stdio.h> #include<iostream> #include<string.h> #include ...

  7. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Khamovniki

    A. Ability Draft 记忆化搜索. #include<stdio.h> #include<iostream> #include<string.h> #i ...

  8. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Korea

    A. Donut 扫描线+线段树. #include<cstdio> #include<algorithm> using namespace std; typedef long ...

  9. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Saratov

    A. Three Arrays 枚举每个$a_i$,双指针出$b$和$c$的范围,对于$b$中每个预先双指针出$c$的范围,那么对于每个$b$,在对应$c$的区间加$1$,在$a$处区间求和即可. 树 ...

随机推荐

  1. VC++ Debug条件断点使用

    If you're trying to reproduce a rare event and getting too many false positives with your breakpoint ...

  2. 基于openssl的https服务配置

    环境: CA服务器:192.168.1.121 WEB服务器: 192.168.1.107 一.在CA服务器上生成自签证书 1.生成根私钥 (umask 077;openssl genrsa -out ...

  3. js中什么是闭包?

    闭包是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分.

  4. 如何在 Linux 上永久挂载一个 Windows 共享

    导读 如果你已经厌倦了每次重启 Linux 就得重新挂载 Windows 共享,读读这个让共享永久挂载的简单方法. 在 Linux 上和一个 Windows 网络进行交互从来就不是件轻松的事情.想想多 ...

  5. awk sed grep 详解

    Linux的文本处理工具浅谈 awk [功能说明] 用于文本处理的语言(取行,过滤),支持正则 NR代表行数,$n取某一列,$NF最后一列 NR==20,NR==30 从20行到30行 FS竖着切,列 ...

  6. 【BZOJ2792】[Poi2012]Well 二分+双指针法

    [BZOJ2792][Poi2012]Well Description 给出n个正整数X1,X2,...Xn,可以进行不超过m次操作,每次操作选择一个非零的Xi,并将它减一. 最终要求存在某个k满足X ...

  7. Struts2数据验证与使用Java代码进行数据验证

    Struts2数据验证 使用Java代码进行数据验证 重写ActionSupport的validate()方法 对Action类的中所有请求处理方法都会进行验证! 对Action类的数据属性进行检查, ...

  8. react 组件积累

    material-ui material-table ant-design https://ant.design/docs/react/getting-started-cn 定义组件(注意,组件的名称 ...

  9. style2paints、deepcolor、sketchkeras项目

    数据集不够怎么办? 1 一些传统的边缘提取算法可以提取图像边缘. 2 这里我们有一个使用神经网络提取线稿图的项目——sketchkeras 源码:https://github.com/lllyasvi ...

  10. Buy the souvenirs---hdu2126(01背包输出方案数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2126 有n个物品每个物品的价格是v[i],现在有m元钱问最多买多少种物品,并求出有多少种选择方法: 如 ...