【pytorch】pytorch基础学习
1. 前言
最近在学习pytorch,先照着官方的“60分钟教程”学习了一下,然后再github上找了两个star比较多的项目,自己写了一下,学习一下别人的写法。
# 2. Deep Learning with PyTorch: A 60 Minute Blitz
2.1 base operations
# base operations
import torch
x = torch.empty(5, 3)
print(x)
x = torch.rand(1, 2)
print(x)
x = torch.zeros(4,5, dtype = torch.long)
print(x)
x = torch.tensor([5.5, 3])
print(x)
x = x.new_ones(5, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
print(x)
print(x.size())
y = torch.rand(5,3)
print(x+y)
print(torch.add(x, y))
result = torch.empty(5,3)
torch.add(x, y, out=result)
print(result)
result = x + y
print('result = ', result)
result = torch.add(x, y)
print('result2 = ', result)
y.add_(x)
print(y)
# 转置
y.t_()
print(y)
# resize
x = torch.randn(4,4)
y = x.view(16)
z = x.view(-1, 8)
print(x.size(), y.size(), z.size())
print(y)
# 只有一个元素的时候
# If you have a one element tensor, use .item() to get the value as a Python number
x = torch.randn(1)
print(x)
print(x.item())
# numpy bridge
a = torch.ones(5)
b = a.numpy()
print(a)
print(b)
a.add_(1)
print(a)
print(b)
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out = a)
print(a)
print(b)
# cuda
if torch.cuda.is_available():
device = torch.device("cuda")
y = torch.ones_like(x, device=device)
x = x.to(device)
z = x + y
print(z)
print(z.to("cpu", torch.double))
# Neural Networks
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
# python中的super( test, self).__init__()
# 首先找到test的父类(比如是类A),然后把类test的对象self转换为类A的对象,然后“被转换”的类A对象调用自己的__init__函数
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
'''
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
'''
'''
You just have to define the forward function, and the backward function (where gradients are computed) is
automatically defined for you using autograd. You can use any of the Tensor operations in the forward function. x
'''
# The learnable parameters of a model are returned by net.parameters()
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
# output
'''
10
torch.Size([6, 1, 5, 5])
'''
# Let try a random 32x32 input Note: Expected input size to this net(LeNet) is 32x32. To use this net on MNIST dataset, please resize the images from the dataset to 32x32.
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
# Zero the gradient buffers of all parameters and backprops with random gradients:(初始化)
net.zero_grad()
out.backward(torch.randn(1, 10))
'''
torch.nn only supports mini-batches. The entire torch.nn package only supports inputs that are
a mini-batch of samples, and not a single sample.
For example, nn.Conv2d will take in a 4D Tensor of nSamples x nChannels x Height x Width.
If you have a single sample, just use input.unsqueeze(0) to add a fake batch dimension.
'''
# Recap
'''
Recap:
torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation, creates at least a single Function node,
that connects to functions that created a Tensor and encodes its history.
'''
output = net(input)
target = torch.randn(10) #a dummy target, for example
target = target.view(1, -1) # # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
#So, when we call loss.backward(), the whole graph is differentiated w.r.t. the loss,
# and all Tensors in the graph that has requires_grad=True will have their .grad Tensor accumulated with the gradient.
#For illustration, let us follow a few steps backward:
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
# BACKPROP
# To backpropagate the error all we have to do is to loss.backward(). You need to clear the existing gradients though, else gradients will be accumulated to existing gradients.
# Now we shall call loss.backward(), and have a look at conv1’s bias gradients before and after the backward.
net.zero_grad() # zeroes the gradient buffers of all parameters
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
# Observe how gradient buffers had to be manually set to zero using optimizer.zero_grad(). This is because gradients are accumulated as explained in Backprop section.
import torch.optim as optim
# create your optimizer
Optimizer = optim.SGD(net.parameters(), lr= 0.01)
# in your training loop:
Optimizer.zero_grad() # 梯度清零 防止叠加
output = net(input)
loss = criterion(output, target)
loss.backward()
Optimizer.step() ## Does the update
2.2 train a classifier
# 1. load and normalize
import torch
import torchvision
import torchvision.transforms as transforms
# The output of torchvision datasets are PILImage images of range [0, 1]. We transform them to Tensors of normalized range [-1, 1].
# PILImage: python imaging Library ,python平台上图像处理标准库
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 进行Normalize之前必须totensor
trainset = torchvision.datasets.CIFAR10(root = './data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship','truck')
# show training images
'''
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.show(np.transpose(npimg, (1, 2, 0)))
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
'''
# 2.define a foreward network
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# first, define convolutional filter and weights of fc
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.max_pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.max_pool(x)
x = F.relu(self.conv2(x))
x = self.max_pool(x)
x = x.view(-1, 16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 3. choose a optimizer
import torch.optim as optim
criterion = nn.CrossEntropyLoss() # loss
optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
# 4. train the network
for epoch in range(2): # loop over the whole dataset multiple times
total_loss = 0
for i, data in enumerate(trainloader, 0): # start from 0
optimizer.zero_grad() # clean the gradient every batch
inputs, labels = data # get a batch data
outputs = net(inputs) # get the outputs
loss = criterion(outputs, labels) # get the constant loss
loss.backward() # compute every parameter's gradient
optimizer.step() # update the parameter
total_loss += loss.item()
# print the information
if i % 2000 == 1999: # print the loss every 2000 mini-batches
print('[%d %5d] loss: %.3f' % (epoch+1, i+1, total_loss / 2000))
total_loss = 0
print('Finished Training')
# 5.test the network on the test data
'''
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(images)
'''
# get the accurate
total = 0
correct = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, prediction = torch.max(outputs.data, 1) #torch.max(a,1/0) 返回每一行/列中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引),_用来获取值,但没用
# outputs.data 应该是获取 tensor
total += labels.size(0)
correct += (prediction == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
# get the class_accurate
class_correct = list(0. for i in range(10)) # create a list for 10 class
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, prediction = torch.max(outputs, 1)
c = (prediction == labels).squeeze() # get a list of series class
for i in range(4): # 4 is batch_size
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
# train on single GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print(device)
net.to(device)
inputs, labels = inputs.to(device), labels.to(device)
# train on multiple GPU
'''
DataParallel splits your data automatically and sends job orders to multiple models on several GPUs. After
each model finishes their job, DataParallel collects and merges the results before returning it to you.
'''
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Parameters and DataLoaders
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# dummy dataset
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
batch_size=batch_size, shuffle=True)
class Model(nn.Module):
# Our model
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.to(device)
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
'''
If you have 2, you will see:
# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])
'''
'''If you have 3 GPUs, you will see:
Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])'''
'''If you have 8, you will see:
Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])'''
3 规范化pytorch训练MNIST数据集
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms
import argparse
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, 5)
self.conv2 = nn.Conv2d(10, 20, 5)
self.conv2_dropout = nn.Dropout2d()
self.max_pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(self.max_pool(self.conv1(x)))
x = F.relu(self.max_pool(self.conv2_dropout(self.conv2(x)))) # dropout need before relu operation
x = x.view(-1, 320)
# print(x.size())
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1) # dim 代表纬度, 加了softmax, 相当于返回就是一个概率
def train(args, model, device, train_loader, optimizer, epoch):
model.train() # 当有drop跟nolizition等操作的时候,需要加上这一句
for i, data in enumerate(train_loader):
images, labels = data
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = F.nll_loss(outputs, labels) # loss = F.nll_loss()
loss.backward()
optimizer.step()
# get the information
if i % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, i * len(images), len(train_loader.dataset),
100. * i / len(train_loader), loss.item())) # 这里没有取log_interval个sample的loss的平均,即某一个log_interval的loss
def test(args, model, device, test_loader):
model.eval()
correct_num = 0
test_loss = 0.
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, prediction = torch.max(outputs.data, 1) # prediction里面是一维索引
correct_num += (prediction == labels).sum().item() # 获得一个batch正确的数量
test_loss += F.nll_loss(outputs, labels, reduction='sum').item() # sum up batch loss
total_num = len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss / total_num, correct_num, total_num,
100. * correct_num / total_num))
def main():
parser = argparse.ArgumentParser(description='PyTorch MNIST')
parser.add_argument('--batch-size', type=int, default=64, metavar='M',
help='input batch size for training (default: 64)')
parser.add_argument('--test_batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
if __name__ == '__main__':
main()
【pytorch】pytorch基础学习的更多相关文章
- pytorch基础学习(一)
在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 ...
- Pytorch的基础数据类型
引言 本篇介绍Pytorch的基础数据类型,判断方式以及常用向量 基础数据类型 torch.Tensor是一种包含单一数据类型元素的多维矩阵. 目前在1.2版本中有9种类型. 同python相比,py ...
- Note | PyTorch官方教程学习笔记
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differenti ...
- 【PyTorch深度学习】学习笔记之PyTorch与深度学习
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...
- pytorch怎么入门学习
pytorch怎么入门学习 https://www.zhihu.com/question/55720139
- 使用PyTorch进行迁移学习
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs) ...
- Pytorch线性规划模型 学习笔记(一)
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...
- pytorch 测试 迁移学习
训练源码: 源码仓库:https://github.com/pytorch/tutorials 迁移学习测试代码:tutorials/beginner_source/transfer_learning ...
- Day1 Python基础学习
一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编写程序,本质仍然是直接操作 ...
- Day1 Python基础学习——概述、基本数据类型、流程控制
一.Python基础学习 一.编程语言分类 1.简介 机器语言:站在计算机的角度,说计算机能听懂的语言,那就是直接用二进制编程,直接操作硬件 汇编语言:站在计算机的角度,简写的英文标识符取代二进制去编 ...
随机推荐
- 转:Java并发编程与技术内幕:线程池深入理解
版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 目录(?)[+] ); } catch (InterruptedExcep ...
- LeetCode_Compare Version Numbers
题目: Compare two version numbers version1 and version2. If version1 > version2 return 1, if versio ...
- Loki之Funtion
阅读Loki中Funtion源码之后的个人理解,该库归纳起来可以说有三层(C++设计新思维列举到2个参数,此处列举到3个参数),要记住C++的模板其实就是C语言高级的宏定义,如果用户没有用到对应的模板 ...
- HTTP错误404.2-Not Found ,模块CgiModule,错误代码0x800704ec
目录 问题案例 解决问题 问题案例 错误:HTTP 错误 404.2 - Not Found. 由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面. 解决问题 网上 ...
- PAT 1130 Infix Expression[难][dfs]
1130 Infix Expression (25 分) Given a syntax tree (binary), you are supposed to output the correspond ...
- MongoDB的固定集合
一.MongoDB固定集合概念 固定集合指的是事先创建,并且大小固定的集合.即假设一个集合设置了固定大小为100,再添加一条文档的时候,会把最前面的文档剔除,永远只保留100条数据. 固定集合特性:固 ...
- knockout 学习使用笔记----绑定map--双向绑定
简单的方式,使用 knockout.mapping.js. 1.引入knockout.mapping.js. 2.声明模型 var model = { task:null, feedbacks:[], ...
- Mac使用操作
快捷键退出程序:Command + Q 快捷键关闭窗口:Command + W(关闭程序的窗口不一定是退出程序) 单击左上角黑苹果,菜单里面有强制退出 Finder菜单的偏好设置,高级设置菜单里面可以 ...
- AtCoder Regular Contest 080 D - Grid Coloring
地址:http://arc080.contest.atcoder.jp/tasks/arc080_b 题目: D - Grid Coloring Time limit : 2sec / Memory ...
- [转]20个你不得不知的Linux服务器性能调优技巧
Linux是一种开源操作系统,它支持各种硬件平台,Linux服务器全球知名,它和Windows之间最主要的差异在于,Linux服务器默认情况下一般不提供GUI(图形用户界面),而是命令行界面,它的主要 ...