【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
【题意】给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间。n<=1000。
【算法】期望DP+记忆化搜索
【题解】首先因为聪聪的步数大于可可,所以不可能出现循环,因此是DAG上的期望DP,用记忆化搜索解决。
每个点bfs预处理p[x][y]表示x走向y的第一步位置,设f[x][y]表示聪聪在x可可在y追上的期望时间。
$$f(x,y)=\sum_{z}\frac{f(g[g[i][j]]][j],z)}{out[x]+1}+1$$
其中z是y的邻点和y自身。
再判断一下一步到达,两步到达和重叠(可可随机到聪聪处)的情况即可。
复杂度O(n^2)。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=;
struct edge{int from,v;}e[maxn*];
int n,m,a,b,ins[maxn],first[maxn],d[maxn],q[],p[maxn][maxn],tot;
double f[maxn][maxn];
void insert(int u,int v)
{
tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;ins[u]++;
tot++;e[tot].v=u;e[tot].from=first[v];first[v]=tot;ins[v]++;
}
double dp(int a,int b)
{
if(f[a][b])return f[a][b];
if(a==b)return f[a][b]=;
if(p[a][b]==b||p[p[a][b]][b]==b)return f[a][b]=;
double ans=dp(p[p[a][b]][b],b);
for(int i=first[b];i;i=e[i].from)
ans+=dp(p[p[a][b]][b],e[i].v);
return f[a][b]=ans/(1.0*ins[b]+)+;
}
void bfs(int x)
{
memset(d,-,sizeof(d));
int head=,tail=;d[x]=;p[x][x]=;
for(int i=first[x];i;i=e[i].from)p[x][e[i].v]=e[i].v,d[e[i].v]=,q[tail++]=e[i].v;
while(head!=tail)
{
int y=q[head++];if(head>)head=;int num=p[x][y];
for(int i=first[y];i;i=e[i].from)
if(d[e[i].v]==-||((d[y]+==d[e[i].v])&&num<p[x][e[i].v]))
{
d[e[i].v]=d[y]+;
p[x][e[i].v]=num;
q[tail++]=e[i].v;
if(tail>)tail=;
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&a,&b);
for(int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
insert(u,v);
}
for(int i=;i<=n;i++)bfs(i);
printf("%.3lf",dp(a,b));
return ;
}
【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索的更多相关文章
- bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索
期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...
- luogu P4206 [NOI2005]聪聪与可可 期望dp 记忆化搜索
LINK:聪聪与可可 这道题的核心是 想到如何统计答案. 如果设f[i][j]表示第i个时刻... 可以发现还需要统计位置信息 以及上一次到底被抓到没有的东西 不太好做. 两者的位置都在变化 所以需要 ...
- 洛谷4206/NOI2005T4 聪聪和可可 期望DP+记忆化搜索
题意:给出n个点m条边的无向图,两个主角聪聪和可可开始分别在S点和T点.聪聪想吃掉可可,每次由匆匆先行动后来可可行动.聪聪的行动是选他到可可的最短路上的点走最多两步(如果最短路有几条就选编号最小的走) ...
- BZOJ1415 [Noi2005]聪聪和可可 【SPFA + 期望dp记忆化搜索】
题目 输入格式 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- [CH3803] 扑克牌 (期望DP+记忆化搜索)
[题目链接] [CH3803] 扑克牌 [题面描述] \(54\)张牌,每次随机摸一张,求得到 A张黑桃 B张红桃 C张梅花 D张方块 的期望步数.特别地,大王和小王可以当做任意一种花色,当然,会选择 ...
- bzoj 1415 期望dp + 记忆化搜索
思路:这个题看着感觉不能dp,其实是可以dp的,因为狼每次走两步,兔子每次走一步,每进行一轮以后,狼和兔子的距离 肯定是在接近的,没有相同的状态,dp之前预处理出来,每一步狼该往哪里走. #inclu ...
- 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1640 Solved: 962 Description I ...
- TSP+期望——lightoj1287记忆化搜索,好题!
感觉是很经典的题 记忆化时因为不好直接通过E判断某个状态是否已经求过,所以再加一个vis打标记即可 /*E[S][u]表示从u出发当前状态是S的期望*/ #include<bits/stdc++ ...
- LightOJ - 1287 Where to Run (期望dp+记忆化)
题面: Last night you robbed a bank but couldn't escape and when you just got outside today, the police ...
随机推荐
- 技嘉主板+AMD CPU开启CPU虚拟化方法
硬件环境:技嘉AB350+AMD Ryzen 5 1600X 由于安装虚拟机的需要,所以要开启CPU的虚拟化. 首先进入BIOS. 然后如图:(M.I.T-高级频率设定-CPU超频进阶设置-SVM M ...
- 【第六周】关于beta测试组员评分标准的若干意见
组名: 新蜂 组长: 武志远 组员: 宫成荣 谢孝淼 杨柳 李峤 项目名称: java俄罗斯方块 评分规则:简单的才是坠吼的,本组不想搞个大新闻,所以奉行极简的评分方式.每一个人交给组长一个排名,假如 ...
- PHP执行原理
简单解释:PHP执行原理 客户端向服务器发送一个请求,如果请求的是一个HTML页面,服务器直接将HTML页面发送到客户端给浏览器解析,如果请求的是PHP页面,则服务器会运行PHP页面然后生成标准的HT ...
- DBGRID控件里可以实现SHIFT复选吗?怎么设置?
////////////////////////////////////////////////// 功能概述:公用的列表框选择框,是用DBGrid网格//// 注意事项:希望用Query ...
- [LeetCode] MaximumDepth of Binary Tree
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
- 【数据库】mysql中复制表结构的方法小结
mysql中用命令行复制表结构的方法主要有一下几种: 1.只复制表结构到新表 ? 1 CREATE TABLE 新表 SELECT * FROM 旧表 WHERE 1=2 或者 ? 1 CREATE ...
- collection 在创建迭代器后 不能在添加数据 否则会出现并发问题
collection 在创建迭代器后 不能在添加数据 否则会出现并发问题
- bzoj4639 博士的选取器
题意 给出一个长度为n的正整数序列,要求把它划分成若干个连续的区间,使得每个区间的数字之和都不超过给定的lim.最后的代价等于每个区间的最大值之和.求最小代价.n<=300000 分析 定义f[ ...
- C++解析(8):C++中的新成员
0.目录 1.动态内存分配 1.1 C++中的动态内存分配 1.2 new关键字与malloc函数的区别 1.3 new关键字的初始化 2.命名空间 2.1 作用域与命名空间 2.2 命名空间的定义和 ...
- Strategy Pattern ava设计模式之策略模式
简介 在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改.这种类型的设计模式属于行为型模式.简单理解就是一组算法,可以互换,再简单点策略就是封装算法. 意图 定义一 ...