P3048 [USACO12FEB]牛的IDCow IDs

    • 12通过
    • 67提交
  • 题目提供者lin_toto
  • 标签USACO2012
  • 难度普及/提高-
  • 时空限制1s / 128MB

提交  讨论  题解

最新讨论更多讨论

  • 谁能解释一下这个样例啊....

题目描述

Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, he is a bit superstitious, and only labels cows with binary numbers that have exactly K "1" bits (1 <= K <= 10). The leading bit of each label is always a "1" bit, of course. FJ assigns labels in increasing numeric order, starting from the smallest possible valid label -- a K-bit number consisting of all "1" bits. Unfortunately, he loses track of his labeling and needs your help: please determine the Nth label he should assign (1 <= N <= 10^7).

FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头。FJ按升序编号,第一个编号是由K个"1"组成。

请问第N(1 <= N <= 10^7)个编号是什么。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

输出格式:

输入输出样例

输入样例#1:

7 3
输出样例#1:

10110 
分析:首先有一个很简单的结论:一个只有0和1的数字串,只有1对数字串大小有影响,0没有影响。很简单证明,大小取决于1的位置和数量。
这道题有一个限制:第一位必须是0,那么我们先将这个串用足够大小保存,足够大的话我们可以添加前导0,到最后从第一个非0位输出即可,也就是说我们要找到一个m,使得C(m,k) >= n,这个可以用二分实现,我们先弄一个m位的全是0的串。然后考虑C(i-1,k)的意义,即还剩i-1位可以填k个1的方案数,也就是说我们还有C(i,k)个不同大小的数,如果C(i-1,k) < n,则说明剩下的数还不够n个,我们不能找到第n大的数,于是我们在i位填1,那么这个数就是能够出现的C(i-1,k)个数中最大的,n-=C(i-1,k),k--,如果C(i-1,k) >= n,说明后面还能找到第n大的,我们填0即可,就这样模拟一下就好了。
不过这个组合数会非常大,还会爆long long,需要分类讨论进行二分.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n, k, f[][], m;
long long num[], cnt; long long Combination(long long n, long long m)
{
long long ans = ;
for (long long i = n; i >= (n - m + ); --i)
ans *= i;
while (m)
ans /= m--;
return ans;
} int main()
{
scanf("%lld%lld", &n, &k);
if (k == )
{
for (int i = n; i; i--)
{
if (i == n)
printf("");
else
printf("");
}
return ;
}
else
{
if (k == )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
if (k >= )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
}
for (long long i = m; i; i--)
{
long long t = Combination(i - , k);
if (t < n)
{
num[i] = ;
n -= t;
k--;
if (!cnt)
cnt = i;
}
if (!k || !n)
break;
}
for (long long i = cnt; i; i--)
printf("%d", num[i]);
} return ;
}
 

洛谷P3048 [USACO12FEB]牛的IDCow IDs的更多相关文章

  1. 洛谷 P3048 [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  2. LUOGU P3048 [USACO12FEB]牛的IDCow IDs(组合数)

    传送门 解题思路 组合数学.首先肯定是要先枚举位数,假如枚举到第\(i\)位.我们可以把第一位固定,然后那么后面的随意放\(1\),个数就为\(C_{i-1}^{k-1}\).然后每次枚举时如果方案\ ...

  3. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

  4. [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  5. [USACO12FEB]牛的IDCow IDs 一题多解(求二进制中有k个1 ,第n大的数)

    题目: FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头.FJ按升序编号,第一个编号是由K个"1&q ...

  6. 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

    洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...

  7. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  8. 洛谷 3029 [USACO11NOV]牛的阵容Cow Lineup

    https://www.luogu.org/problem/show?pid=3029 题目描述 Farmer John has hired a professional photographer t ...

  9. 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

随机推荐

  1. 【RL系列】从蒙特卡罗方法步入真正的强化学习

    蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益. ...

  2. gopherjs

    An example implementation of a GopherJS client and a Go server using the Improbable gRPC-Web impleme ...

  3. Heavy Cargo POJ 2263 (Floyd传递闭包)

    Description Big Johnsson Trucks Inc. is a company specialized in manufacturing big trucks. Their lat ...

  4. 1019psp

    1.本周psp: 2.本周进度条: 3.累计进度图(折线图): 4.psp饼状图:

  5. struts通配符*的使用

    <action name="user_*" class="com.wangcf.UserAction" method="{1}"> ...

  6. 6/2 sprint2 看板和燃尽图的更新

  7. 3dContactPointAnnotationTool开发日志(三三)

      添加背景图片后发现Runtime Transform Gizmo无法选中物体了:   于是改了一下EditorObjectSelection.cs中的WereAnyUIElementsHovere ...

  8. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  9. 规则引擎之easyRules

    规则引擎听起来是蛮高深的一个词语,但透过现象看本质,Martin Fowler 有如下言: You can build a simple rules engine yourself. All you ...

  10. css & text-overflow & ellipsis

    css & text-overflow & ellipsis https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflo ...