P3048 [USACO12FEB]牛的IDCow IDs

    • 12通过
    • 67提交
  • 题目提供者lin_toto
  • 标签USACO2012
  • 难度普及/提高-
  • 时空限制1s / 128MB

提交  讨论  题解

最新讨论更多讨论

  • 谁能解释一下这个样例啊....

题目描述

Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, he is a bit superstitious, and only labels cows with binary numbers that have exactly K "1" bits (1 <= K <= 10). The leading bit of each label is always a "1" bit, of course. FJ assigns labels in increasing numeric order, starting from the smallest possible valid label -- a K-bit number consisting of all "1" bits. Unfortunately, he loses track of his labeling and needs your help: please determine the Nth label he should assign (1 <= N <= 10^7).

FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头。FJ按升序编号,第一个编号是由K个"1"组成。

请问第N(1 <= N <= 10^7)个编号是什么。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

输出格式:

输入输出样例

输入样例#1:

7 3
输出样例#1:

10110 
分析:首先有一个很简单的结论:一个只有0和1的数字串,只有1对数字串大小有影响,0没有影响。很简单证明,大小取决于1的位置和数量。
这道题有一个限制:第一位必须是0,那么我们先将这个串用足够大小保存,足够大的话我们可以添加前导0,到最后从第一个非0位输出即可,也就是说我们要找到一个m,使得C(m,k) >= n,这个可以用二分实现,我们先弄一个m位的全是0的串。然后考虑C(i-1,k)的意义,即还剩i-1位可以填k个1的方案数,也就是说我们还有C(i,k)个不同大小的数,如果C(i-1,k) < n,则说明剩下的数还不够n个,我们不能找到第n大的数,于是我们在i位填1,那么这个数就是能够出现的C(i-1,k)个数中最大的,n-=C(i-1,k),k--,如果C(i-1,k) >= n,说明后面还能找到第n大的,我们填0即可,就这样模拟一下就好了。
不过这个组合数会非常大,还会爆long long,需要分类讨论进行二分.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n, k, f[][], m;
long long num[], cnt; long long Combination(long long n, long long m)
{
long long ans = ;
for (long long i = n; i >= (n - m + ); --i)
ans *= i;
while (m)
ans /= m--;
return ans;
} int main()
{
scanf("%lld%lld", &n, &k);
if (k == )
{
for (int i = n; i; i--)
{
if (i == n)
printf("");
else
printf("");
}
return ;
}
else
{
if (k == )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
if (k >= )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
}
for (long long i = m; i; i--)
{
long long t = Combination(i - , k);
if (t < n)
{
num[i] = ;
n -= t;
k--;
if (!cnt)
cnt = i;
}
if (!k || !n)
break;
}
for (long long i = cnt; i; i--)
printf("%d", num[i]);
} return ;
}
 

洛谷P3048 [USACO12FEB]牛的IDCow IDs的更多相关文章

  1. 洛谷 P3048 [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  2. LUOGU P3048 [USACO12FEB]牛的IDCow IDs(组合数)

    传送门 解题思路 组合数学.首先肯定是要先枚举位数,假如枚举到第\(i\)位.我们可以把第一位固定,然后那么后面的随意放\(1\),个数就为\(C_{i-1}^{k-1}\).然后每次枚举时如果方案\ ...

  3. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

  4. [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  5. [USACO12FEB]牛的IDCow IDs 一题多解(求二进制中有k个1 ,第n大的数)

    题目: FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头.FJ按升序编号,第一个编号是由K个"1&q ...

  6. 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

    洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...

  7. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  8. 洛谷 3029 [USACO11NOV]牛的阵容Cow Lineup

    https://www.luogu.org/problem/show?pid=3029 题目描述 Farmer John has hired a professional photographer t ...

  9. 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

随机推荐

  1. Android开发设计 实验报告

    20162315 Android开发设计 实验报告 实验内容 1.安装 Android Stuidio,完成Hello World, 要求修改res目录中的内容,Hello World后要显示自己的学 ...

  2. U盘安装OSX

    1.插入U盘,磁盘工具,格式化U盘为Mac OS X拓展 (日志式): 2.去网站搜索recovery disk assistant,此文件大约1.1M,直接打开使用它制作启动盘,进度条完毕就完成了. ...

  3. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树+计数排序

    题目链接: http://codeforces.com/problemset/problem/558/E E. A Simple Task time limit per test5 secondsme ...

  4. fastjson&gson

    1.model转fastjson时,model成员变量是对象的,再转成fastjson时,不能仅仅判断key是否存在.应该判断其值是否为"". 2.gson 在 dao层貌似没有用 ...

  5. lintcode-423-有效的括号序列

    423-有效的括号序列 给定一个字符串所表示的括号序列,包含以下字符: '(', ')', '{', '}', '[' and ']', 判定是否是有效的括号序列. 样例 括号必须依照 "( ...

  6. 判断字符串中是否存在的几种方案:string.indexof、string.contains、list.contains、list.any几种方式效率对比

    我们在做项目时,可能会遇到这样的需求,比如判断,1,2,3,33,22,123, 中是否存在,3,. var str=",1,2,3,33,22,123,"; 一般有几种方式: 1 ...

  7. 【Biocode】产生三行的seq+01序列

    代码说明: sequence.txt与site.txt整合 如下图: sequence.txt: site.txt: 整理之后如下: 蛋白质序列中发生翻译后修饰的位置标记为“1”,其他的位置标记为“0 ...

  8. CodeForces Round #527 (Div3) B. Teams Forming

    http://codeforces.com/contest/1092/problem/B There are nn students in a university. The number of st ...

  9. win7 64位机ODBC的数据源DSN添加和移除问题

    64位机器上ODBC的操作方法与32位机器是不一样的,如果直接从控制面板上-管理员工具-ODBC进去的话会发现User DSN以及System DSN里面都为空,ADD的时候连ODBC Driver都 ...

  10. Additinal Dependencies和#pragma comment(lib,"*.lib")的分析

     网上.一些书上也写道,这两种方式作用一样.其实仔细分析,它们两者还是有非常大的差异的. Additinal Dependencies和#pragma comment(lib,"*.lib& ...