问题导读:
1.hadoop2.x自带wordcount在什么位置?
2.运行wordcount程序,需要做哪些准备?

此篇是在
hadoop2完全分布式最新高可靠安装文档

hadoop2.X使用手册1:通过web端口查看主节点、slave1节点及集群运行状态

基础上对hadoop2.2的进一步认识。这里交给大家如何运行hadoop2.2自带例子

1.找到examples例子
我们需要找打这个例子的位置:首先需要找到你的hadoop文件夹,然后依照下面路径:
/hadoop/share/hadoop/mapreduce会看到如下图:

  1. hadoop-mapreduce-examples-2.2.0.jar

复制代码

<ignore_js_op>

第二步:
我们需要需要做一下运行需要的工作,比如输入输出路径,上传什么文件等。
1.先在HDFS创建几个数据目录:

  1. hadoop fs -mkdir -p /data/wordcount
  2. hadoop fs -mkdir -p /output/

复制代码

<ignore_js_op>

2.目录/data/wordcount用来存放Hadoop自带的WordCount例子的数据文件,运行这个MapReduce任务的结果输出到/output/wordcount目录中。
首先新建文件inputWord:

  1. vi /usr/inputWord

复制代码

新建完毕,查看内容:

  1. cat /usr/inputWord

复制代码

<ignore_js_op>

将本地文件上传到HDFS中:

  1. hadoop fs -put /usr/inputWord /data/wordcount/

复制代码

可以查看上传后的文件情况,执行如下命令:

  1. hadoop fs -ls /data/wordcount

复制代码

可以看到上传到HDFS中的文件。
<ignore_js_op>

通过命令

  1. hadoop fs -text /data/wordcount/inputWord

复制代码

看到如下内容:
<ignore_js_op>

下面,运行WordCount例子,执行如下命令:

  1. hadoop jar /usr/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /data/wordcount /output/wordcount

复制代码

<ignore_js_op> 
可以看到控制台输出程序运行的信息:

aboutyun@master:~$ hadoop jar /usr/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /data/wordcount /output/wordcount
14/05/14 10:33:33 INFO client.RMProxy: Connecting to ResourceManager at master/172.16.77.15:8032
14/05/14 10:33:34 INFO input.FileInputFormat: Total input paths to process : 1
14/05/14 10:33:34 INFO mapreduce.JobSubmitter: number of splits:1
14/05/14 10:33:34 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/05/14 10:33:34 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/05/14 10:33:34 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/05/14 10:33:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1400084979891_0004
14/05/14 10:33:36 INFO impl.YarnClientImpl: Submitted application application_1400084979891_0004 to ResourceManager at master/172.16.77.15:8032
14/05/14 10:33:36 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1400084979891_0004/
14/05/14 10:33:36 INFO mapreduce.Job: Running job: job_1400084979891_0004
14/05/14 10:33:45 INFO mapreduce.Job: Job job_1400084979891_0004 running in uber mode : false
14/05/14 10:33:45 INFO mapreduce.Job:  map 0% reduce 0%
14/05/14 10:34:10 INFO mapreduce.Job:  map 100% reduce 0%
14/05/14 10:34:19 INFO mapreduce.Job:  map 100% reduce 100%
14/05/14 10:34:19 INFO mapreduce.Job: Job job_1400084979891_0004 completed successfully
14/05/14 10:34:20 INFO mapreduce.Job: Counters: 43
        File System Counters
                FILE: Number of bytes read=81
                FILE: Number of bytes written=158693
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=175
                HDFS: Number of bytes written=51
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=23099
                Total time spent by all reduces in occupied slots (ms)=6768
        Map-Reduce Framework
                Map input records=5
                Map output records=10
                Map output bytes=106
                Map output materialized bytes=81
                Input split bytes=108
                Combine input records=10
                Combine output records=6
                Reduce input groups=6
                Reduce shuffle bytes=81
                Reduce input records=6
                Reduce output records=6
                Spilled Records=12
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=377
                CPU time spent (ms)=11190
                Physical memory (bytes) snapshot=284524544
                Virtual memory (bytes) snapshot=2000748544
                Total committed heap usage (bytes)=136450048
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=67
        File Output Format Counters 
                Bytes Written=51

查看结果,执行如下命令:

  1. hadoop fs -text /output/wordcount/part-r-00000

复制代码

结果数据示例如下:

  1. aboutyun@master:~$ hadoop fs -text /output/wordcount/part-r-00000
  2. aboutyun        2
  3. first        1
  4. hello        3
  5. master        1
  6. slave        2
  7. what        1

复制代码

<ignore_js_op> 
登录到Web控制台,访问链接http://master:8088/可以看到任务记录情况。

下一篇:hadoop2.2运行mapreduce(wordcount)问题总结

hadoop2.2使用手册2:如何运行自带wordcount的更多相关文章

  1. Hadoop 2.6.3运行自带WordCount程序笔记

    运行平台:Hadoop 2.6.3 模式:完全分布模式 1.准备统计文本,以一段文字为例:eg.txt The Project Gutenberg EBook of War and Peace, by ...

  2. hadoop:如何运行自带wordcount

    1.在linux系统创建文件 vi aa.txt   --------i 进行编辑  输入  内容(多个单词例如:aa bb cc aa) 2.在HDFS上面创建文件夹 hdfs dfs -mkdir ...

  3. 指导手册04:运行MapReduce

    指导手册04:运行MapReduce   Part 1:运行单个MapReduce任务 情景描述: 本次任务要求对HDFS目录中的数据文件/user/root/email_log.txt进行计算处理, ...

  4. 伪分布式环境下命令行正确运行hadoop示例wordcount

    首先确保hadoop已经正确安装.配置以及运行. 1.     首先将wordcount源代码从hadoop目录中拷贝出来. [root@cluster2 logs]# cp /usr/local/h ...

  5. VSCode 使用 Code Runner 插件无法编译运行文件名带空格的文件

    本文同时在我的博客发布:VSCode 使用 Code Runner 插件无法编译运行文件名带空格的文件 - Skykguj 's Blog (sky390.cn) 使用 Visual Studio C ...

  6. 【hadoop2.6.0】安装+例子运行

    由于下载的是hadoop的最新版,网上各种杂七杂八的东西都不适用.好在官网上说的也够清楚了.如果有人看这篇文章的话,最大的忠告就是看官网. 官网2.6.0的安装教程:http://hadoop.apa ...

  7. 【hadoop2.6.0】通过代码运行程序流程

    之前跑了一下hadoop里面自带的例子,现在顺一下如何通过源代码来运行程序. 我懒得装eclipse,就全部用命令行了. 整体参考官网上的:http://hadoop.apache.org/docs/ ...

  8. hadoop2.X使用手册1:通过web端口查看主节点、slave1节点及集群运行状态

    导读内容:1.如何通过web查看hdfs集群状态2.如何通过web查看运行在在主节点master上ResourceManager状态3.如何通过web查看运行在在slave节点NodeManager资 ...

  9. Ubuntu 12.04.5 LTS 上安装hadoop 2.6.0后运行自带的例程wordcount

    注:我所有的操作均通过Xshell 5远程连接Ubuntu进行实施 第一步:启动hadoop,利用jps查看hadoop是否已经启动,如果没有启动用start-dfs.sh脚本启动(hadoop2.X ...

随机推荐

  1. css hover dropdown

    html-------------------------- <div class="dropdown"> <span>鼠标移动到我这!</span& ...

  2. python调用虹软2.0(全网首发)-更新中

    python调用虹软2.0目前没有任何demo可以参考,自己研究了2个晚上终于把第一步做出来了,使用了opencv来加载和显示图片,龟速更新中 这一版作废,新版已发出:https://www.cnbl ...

  3. 缓存技术内部交流_02_Ehcache3 XML 配置

    参考资料: http://www.ehcache.org/documentation/3.2/getting-started.html#configuring-with-xml http://www. ...

  4. Servlet之监听事件细究

    观察者三个模式: ServletContextListener:用于监听WEB 应用启动和销毁的事件,监听器类需要实现javax.servlet.ServletContextListener 接口. ...

  5. Spring ApplicationListener 理解

    在开发时有时候需要在整个应用开始运行时执行一些特定代码,比如初始化环境,准备测试数据.加载一些数据到内存等等. 在spring中可以通过ApplicationListener来实现相关的功能,加载完成 ...

  6. 17.并发容器之ThreadLocal

    1. ThreadLocal的简介 在多线程编程中通常解决线程安全的问题我们会利用synchronzed或者lock控制线程对临界区资源的同步顺序从而解决线程安全的问题,但是这种加锁的方式会让未获取到 ...

  7. 河南省多校联盟二-A

    1279: 简单的背包问题 时间限制: 1 秒  内存限制: 32 MB提交: 361  解决: 20 题目描述 相信大家都学过背包问题了吧,那么现在我就考大家一个问题.有n个物品,每个物品有它的重量 ...

  8. spring配置bean的生命周期

    配置文件: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http:// ...

  9. zen cart 空白页面的解决方案

    在安装zen cart 这套CMS时, 有时候会由于修改了某些页面或者是由于环境的某些组件的版本问题导致前台页面出现空白页, 由于在空白页面处没有任何提示, 并且在日志中也没有这样的出错提示, 导致在 ...

  10. *SCM-MANAGER独立部署方式

    从官网获取最新版本 scm-manager 独立安装包 https://www.scm-manager.org/download/ 解压 为合适的路径 修改 services.bat 文件服务相关信息 ...