CodeForces - 321E:Ciel and Gondolas (四边形不等式优化DP)
题意:N个人排成一行,分成K组,要求每组的不和谐值之和最小。
思路:开始以为是斜率优化DP,但是每个区间的值其实已经知道了,即是没有和下标有关的未知数了,所以没必要用斜率。 四边形优化。
dp[i][j]表示前j个人分为i组的最小代价。 622ms
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int sum[maxn][maxn],cost[maxn][maxn],dp[][maxn],pos[][maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
int main()
{
int N,K,x,y;
scanf("%d%d",&N,&K);
rep(i,,K) rep(j,,N) dp[i][j]=;
rep(i,,N) rep(j,,N){
read(sum[i][j]);
sum[i][j]=sum[i][j]+sum[i][j-]+sum[i-][j]-sum[i-][j-];
}
rep(i,,N) rep(j,i+,N) cost[i][j]=(sum[j][j]+sum[i-][i-]-sum[j][i-]-sum[i-][j])/;
rep(i,,N) dp[][i]=cost[][i];
rep(i,,K){
for(int j=N;j>=i;j--){
int L=pos[i-][j]?pos[i-][j]:;
int R=pos[i][j+]?pos[i][j+]:N;
rep(k,L,R){
if(dp[i-][k]+cost[k+][j]<dp[i][j]){
dp[i][j]=dp[i-][k]+cost[k+][j];
pos[i][j]=k;
}
}
}
}
printf("%d\n",dp[K][N]);
return ;
}
利用DP决策单调性解决:684ms。二者时间差不多。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int inf=0x3f3f3f3f;
int sum[maxn][maxn],cost[maxn][maxn],dp[maxn],ans[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
void get(int l,int r,int L,int R){
if(l>r) return ;
int mid=(l+r)>>,MID;
rep(i,L+,min(R+,mid)){
if(ans[mid]>dp[i-]+cost[i][mid]){
ans[mid]=dp[i-]+cost[i][mid]; MID=i-;
}
}
get(l,mid-,L,MID); get(mid+,r,MID,R);
}
int main()
{
int N,K,x,y;
scanf("%d%d",&N,&K);
rep(i,,N) rep(j,,N){
read(sum[i][j]);
sum[i][j]=sum[i][j]+sum[i][j-]+sum[i-][j]-sum[i-][j-];
}
rep(i,,N) rep(j,i+,N) cost[i][j]=(sum[j][j]+sum[i-][i-]-sum[j][i-]-sum[i-][j])/;
rep(i,,N) ans[i]=cost[][i];
rep(i,,K){
rep(j,,N) dp[j]=ans[j],ans[j]=inf;
get(,N,,N-);
}
printf("%d\n",ans[N]);
return ;
}
CodeForces - 321E:Ciel and Gondolas (四边形不等式优化DP)的更多相关文章
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- 网络流learning
上次学习网络流还是大一的下学期,之后就被从图论分出来交给队友了 然而吉林一战,队友在深圳读研而不能来,于是需要自己学习一下,争取在比赛前看完网络流建模汇总和一些总结,升华一下. 同时记录一下自己做过的 ...
- sonar总结--
maven的setting.xml 配置 https://www.cnblogs.com/javawebsoa/p/3206504.html
- Unique Binary Search Trees,Unique Binary Search Trees2 生成二叉排序树
Unique Binary Search Trees:求生成二叉排序树的个数. Given n, how many structurally unique BST's (binary search t ...
- 解决httpclient请求响应压缩文本乱码问题
最近在调用京东的获取省份接口老是中文乱码,加了utf-8也没有用.最后在httpclient打的日志中有Content-Encoding:gzip信息,最后在请求header里加上: reqHeade ...
- JAVA8 HashMap 源码阅读
序 阅读java源码可能是每一个java程序员的必修课,只有知其所以然,才能更好的使用java,写出更优美的程序,阅读java源码也为我们后面阅读java框架的源码打下了基础.阅读源代码其实就像再看一 ...
- 从源码角度分析 Kotlin by lazy 的实现
by lazy 的作用 延迟属性(lazy properties) 是 Kotlin 标准库中的标准委托之一,可以通过 by lazy 来实现. 其中,lazy() 是一个函数,可以接受一个 Lamb ...
- 蓄水池抽样算法 Reservoir Sampling
2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...
- #if 0 #endif && #if 1 #endif ----待整理
在看一个 usbcan 的上位机例程中发现了这个,于是百度下,记录下来.(参考:http://nevel.cnblogs.com/p/6378035.html)
- ie下的bug之button
场景描述: 现在页面设计是都喜欢自定义按钮样式,某日接收到页面发现在ie下有bug,上代码: <div> <button><span><a href=&quo ...
- Quartz教程一:使用quartz
原文链接 | 译文链接 | 翻译:nkcoder | 校对:方腾飞 本系列教程由quartz-2.2.x官方文档翻译.整理而来,希望给同样对quartz感兴趣的朋友一些参考和帮助,有任何不当或错误之处 ...