29-中国剩余定理CRT
中国剩余定理的具体描述是这样的:

给出你n个ai和mi,最后让求出x的最小值是多少。
中国剩余定理说明:假设整数m1, m2, ... , mn两两互质,则对任意的整数:a1, a2, ... , an,方程组
有解,并且通解可以用如下方式构造得到:
- 设
是整数m1, m2, ... , mn的乘积,并设
是除了mi以外的n - 1个整数的乘积。 - 设
为
模
的数论倒数:
- 方程组
的通解形式为:
在模
的意义下,方程组
只有一个解:
使用中国剩余定理来求解上面的“物不知数”问题,便可以理解《孙子歌诀》中的数字含义。这里的线性同余方程组是:
三个模数m1
3, m2
5, m3
7的乘积是M
105,对应的M1
35, M2
21, M3
15. 而可以计算出相应的数论倒数:t1
2, t2
1, t3
1. 所以《孙子歌诀》中的70,21和15其实是这个“物不知数”问题的基础解:
而将原方程组中的余数相应地乘到这三个基础解上,再加起来,其和就是原方程组的解:
这个和是233,实际上原方程组的通解公式为:
《孙子算经》中实际上给出了最小正整数解,也就是k
-2时的解:x
23.
- ///n个mi互质
- const LL maxn = 20;
- LL a[maxn], m[maxn], n;
- LL CRT(LL a[], LL m[], LL n)
- {
- LL M = 1;
- for (int i = 0; i < n; i++) M *= m[i];
- LL ret = 0;
- for (int i = 0; i < n; i++)
- {
- LL x, y;
- LL tm = M / m[i];
- ex_gcd(tm, m[i], x, y);
- ret = (ret + tm * x * a[i]) % M;
- }
- return (ret + M) % M;
- }
分割线
- ///n个mi不互质
- const LL maxn = 1000;
- LL a[maxn], m[maxn], n;
- LL CRT(LL a[], LL m[], LL n) {
- if (n == 1) {
- if (m[0] > a[0]) return a[0];
- else return -1;
- }
- LL x, y, d;
- for (int i = 1; i < n; i++) {
- if (m[i] <= a[i]) return -1;
- d = ex_gcd(m[0], m[i], x, y);
- if ((a[i] - a[0]) % d != 0) return -1; //不能整除则无解
- LL t = m[i] / d;
- x = ((a[i] - a[0]) / d * x % t + t) % t; //第0个与第i个模线性方程的特解
- a[0] = x * m[0] + a[0];
- m[0] = m[0] * m[i] / d;
- a[0] = (a[0] % m[0] + m[0]) % m[0];
- }
- return a[0];
- }
以上大部分内容来自wiki
29-中国剩余定理CRT的更多相关文章
- 「中国剩余定理CRT」学习笔记
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...
- 中国剩余定理CRT(孙子定理)
中国剩余定理 给出以下的一元线性同余方程组: $\Large(s):\left\{\begin{aligned}x\equiv a_1\ (mod\ m_1)\\x\equiv a_2\ (mod\ ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- 卢卡斯定理&&中国剩余定理
卢卡斯定理(模数较小,且是质数) 式子C(m,n)=C(m/p,n/p)*C(m%p,n%p)%p 至于证明(我也不会QAQ,只要记住公式也该就好了). 同时卢卡斯定理一般用于组合数取模上 1.首先当 ...
- gcd,扩展欧几里得,中国剩余定理
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...
- NOI 2018 屠龙勇士 (拓展中国剩余定理excrt+拓展欧几里得exgcd)
题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用e ...
- POJ 1006:Biorhythms 中国剩余定理
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 121194 Accepted: 38157 Des ...
- RSA遇上中国剩余定理
1.Introduction 最近读论文刚好用到了这个,之前只是有耳闻,没有仔细研究过,这里就好好捋一下,会逐步完善 不过貌似CRT(中国剩余定理)的实现更容易被攻击 2. RSA: Overview ...
- 《孙子算经》之"物不知数"题:中国剩余定理
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数. 如果 m ...
随机推荐
- 研究ecmall一些流程、结构笔记 (转)
index.phpECMall::startup() //ecmall.php object //所有类的基础类 ecmall.phpBaseApp //控制器基础类 app.base.phpECBa ...
- U盘永久系统-centos
U盘永久系统-centos 问题: 服务器centos系统崩溃,重装需要备份其中数据,约4T,实验室有远程存储服务器,然而rescue模式进去后无法挂载远程存储,只好做一个真正的U盘系统解决了. 方案 ...
- GOF23设计模式之享元模式(flyweight)
一.享元模式概述 内存属于稀缺资源,不要随便浪费.如果有很多个完全相同或相似的对象,可以通过享元模式,节省内存. 享元模式核心: (1)享元模式可以共享的.方式高效的支持大量细粒度对象的重用: (2) ...
- 【kubernetes】kubectl logs connection refused
因为启动dashboard报CrashLoopBackOff错误,尝试使用logs去查看日志,结果报错,错误如下: [root@localhost ~]# kubectl -s http://192. ...
- lnmp环境应用实践
LNMP 用户通过浏览器输入域名请求nginx web服务,如果请求时静态资源,则由nginx解析返回给用户:如果是动态请求(.php结尾),那么nginx就会把它通过FastCGI接口(生产常用方法 ...
- 【学习笔记】LCT link cut tree
大概就是供自己复习的吧 1. 细节讲解 安利两篇blog: Menci 非常好的讲解与题单 2.模板 把 $ rev $ 和 $ pushdown $ 的位置记清 #define lc son[x][ ...
- JAVA中构造函数的参数传递给类中的实例变量
class VolcanoRobot1 { String status; int speed; float temperature; VolcanoRobot1(int speed,float tem ...
- C++中的运算符重载练习题
1.RMB类 要求: 定义一个RMB类 Money,包含元.角.分三个数据成员,友元函数重载运算符‘+’(加) 和 ‘-’(减),实现货币的加减运算 例如: 请输入元.角 分: ...
- 如何在Oracle中向Collection类型的变量中逐条插入数据
这篇文章将要介绍如果需要生成一个新的Collection并且向其中添加数据的方法. procedure insert_object(d in dept_array, d2 out dept_array ...
- linux rz 乱码
Linux shell rz和sz是终端下常用的文件传输命令,rz和sz通过shell被调用,其中rz用于从启用终端的系统上传文件到目标系统(终端登录的目标系统), 这里不过多介绍这些命令,只是记录一 ...




与
同解。