这道题主要利用了最小生成树的两个性质

  1. 最小生成树每种边权的数目固定不变

  2. 最小生成树每种边权带来的连通状况一定唯一

由于每种边权的只有不到10种,所以直接穷举然后乘法原理即可

 const mo=;
type node=record
       x,y,w:longint;
     end; var a:array[..] of node;
    fa,rank,v:array[..] of longint;
    sum,ans,k1,k2,s,i,j,n,m,p,k:longint; function getf(x:longint):longint;
  begin
    if fa[x]<>x then fa[x]:=getf(fa[x]);
    exit(fa[x]);
  end; procedure swap(var a,b:node);
  var c:node;
  begin
    c:=a;
    a:=b;
    b:=c;
  end; procedure sort(l,r:longint);
  var i,j,x,y:longint;
  begin
    i:=l;
    j:=r;
    x:=a[(l+r) shr ].w;
    repeat
      while a[i].w<x do inc(i);
      while x<a[j].w do dec(j);
      if not(i>j) then
      begin
        swap(a[i],a[j]);
        inc(i);
        j:=j-;
      end;
    until i>j;
    if l<j then sort(l,j);
    if i<r then sort(i,r);
  end; function calc(x:longint):longint;
  begin
    calc:=;
    while x> do
    begin
      calc:=calc+x mod ;
      x:=x shr ;
    end;
  end; function check(p,cur:longint):longint;
  var i,res,tot:longint;
  begin
    for i:= to n do
      fa[i]:=i;
    tot:=;
    res:=;
    for i:=p to j- do
    begin
      if cur and = then
      begin
        k1:=getf(a[i].x);
        k2:=getf(a[i].y);
        if k1<>k2 then
        begin
          fa[k1]:=k2;
          inc(tot);
          res:=res+a[i].w;
        end;
      end;
      cur:=cur shr ;
    end;
    for i:= to m do
    begin
      if a[i].w=a[j-].w then continue;
      k1:=getf(a[i].x);
      k2:=getf(a[i].y);
      if k1<>k2 then
      begin
        fa[k1]:=k2;
        inc(tot);
        res:=res+a[i].w;
      end;
    end;
    if (res=sum) and (tot=n-) then exit() else exit();
  end; begin
  readln(n,m);
  for i:= to m do
    readln(a[i].x,a[i].y,a[i].w);
  sort(,m);
  for i:= to n do
    fa[i]:=i;
  rank[]:=;
  p:=;
  for i:= to m do
  begin
    if a[i].w<>a[i-].w then inc(p);
    rank[i]:=p;
  end;
  i:=;
  j:=;
  while i<n- do
  begin
    inc(j);
    k1:=getf(a[j].x);
    k2:=getf(a[j].y);
    if k1<>k2 then
    begin
      fa[k1]:=k2;
      inc(i);
      inc(v[rank[j]]);
      sum:=sum+a[j].w;
    end;
  end;
  if i<n- then
  begin
    writeln();
    halt;
  end;
  ans:=;
  i:=;
  while i<=m do
  begin
    j:=i+;
    while a[i].w=a[j].w do inc(j);
    if v[rank[i]]> then
    begin
      s:=;
      for k:= to shl (j-i)- do
        if calc(k)=v[rank[i]] then s:=s+check(i,k);
      ans:=ans*s mod mo;
    end;
    i:=j;
  end;
  writeln(ans);
end.

bzoj1016的更多相关文章

  1. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  2. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  3. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

  4. BZOJ1016 最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  6. bzoj1016:[JSOI2008]最小生成树计数

    思路:模拟kruskal的过程,可以发现对于所有权值相同的边,有很多种选择的方案,而且权值不同的边并不会相互影响,因为先考虑权值较小的边,权值比当前权值大的边显然不在考虑范围之内,而权值比当前权值小的 ...

  7. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. 【BZOJ1016】【JSOI2008】最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

随机推荐

  1. Linq 与UnitOfWork

    submitchages(linq to sql)或者savechanges(ef)的次数是根据你操作方法的数量决定的,也即是:它只认识自己的提交语句(submtchanges,savechanges ...

  2. Java I/O重定向

    1.输入重定向 命令行:java [java类文件] < [输入文件路径名] 代码:InputStream inputStream = new FileInputStream(          ...

  3. 100个iOS开发面试题汇总-王刚韧的技术博客

    100个iOS开发面试题汇总 关于iOS开发面试,不管对于招聘和应聘来说,面试都是很重要的一个环节,特别对于开发者来说,面试中的技术问题环节不仅是企业对应聘者技能和积累的考察,也是一个开发者自我检验的 ...

  4. SDL实现按钮

    是的,按钮控件很常见,几乎在每一个Windows窗体内都能找到它的身影.SDL作为一套“一套开放源代码的跨平台多媒体开发库”,自然可以实现按钮.而按钮实现的重点,就是SDL的鼠标响应事件. SDL的鼠 ...

  5. shipyard docker 管理平台

    终于把shipyard弄好了. 我也是根据shipyard的官方文档,做的.在刚开始的时候觉得好难,也遇到了困难,查看了好多文档 但做完之后发现,只需要几步就能简单的配置成功,就能运行了. 修改tcp ...

  6. 安装hadoop多节点 各种整理

    ubuntu烧制usb启动盘链接: 点击打开链接https://help.ubuntu.com/community/Installation/FromUSBStick ubuntu磁盘分区: 点击打开 ...

  7. AS3.0的动态类和密封类

    动态类:生成的实例可以在运行时动态添加属性和方法.类名前有dynamic就是动态类 密封类:生成的实例不可以在运行时动态添加属性和方法

  8. 让你的 Node.js 应用跑得更快的 10 个技巧

    Node.js 受益于它的事件驱动和异步的特征,已经很快了.但是,在现代网络中只是快是不行的.如果你打算用 Node.js 开发你的下一个Web 应用的话,那么你就应该无所不用其极,让你的应用更快,异 ...

  9. js与uri中location关系

    //获取域名host = window.location.host;host2=document.domain; //获取页面完整地址url = window.location.href; docum ...

  10. 安装mysql-python需要碰到错误:Unable to find vcvarsall.bat 的解决方法

    1.发现从https://pypi.python.org/pypi/MySQL-python/1.2.5#downloads  下载下来的python版本是2.7