题目链接:POJ - 2774

题目分析

题目要求求出两个字符串的最长公共子串,使用后缀数组求解会十分容易。

将两个字符串用特殊字符隔开再连接到一起,求出后缀数组。

可以看出,最长公共子串就是两个字符串分别的一个后缀的 LCP ,并且这两个后缀在 SA 中一定是相邻的。

那么他们的 LCP 就是 Height[i] ,当然,Height[i] 的最大值不一定就是 LCS ,因为可能 SA[i] 和 SA[i-1] 是在同一个字符串中。

那么判断一下,如果 SA[i] 与 SA[i - 1] 分别在两个字符串中,就用 Height[i] 更新 Ans 。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const int MaxL = 200000 + 15; int n, l1, l2, Ans;
int A[MaxL], Rank[MaxL], Height[MaxL], SA[MaxL];
int VA[MaxL], VB[MaxL], VC[MaxL], Sum[MaxL]; char S1[MaxL], S2[MaxL]; inline bool Cmp(int *a, int x, int y, int l) {
return (a[x] == a[y]) && (a[x + l] == a[y + l]);
} void DA(int *A, int n, int m) {
int *x, *y, *t;
x = VA; y = VB;
for (int i = 1; i <= m; ++i) Sum[i] = 0;
for (int i = 1; i <= n; ++i) ++Sum[x[i] = A[i]];
for (int i = 2; i <= m; ++i) Sum[i] += Sum[i - 1];
for (int i = n; i >= 1; --i) SA[Sum[x[i]]--] = i;
int p, q;
p = 0;
for (int j = 1; p < n; j <<= 1, m = p) {
q = 0;
for (int i = n - j + 1; i <= n; ++i) y[++q] = i;
for (int i = 1; i <= n; ++i) {
if (SA[i] <= j) continue;
y[++q] = SA[i] - j;
}
for (int i = 1; i <= n; ++i) VC[i] = x[y[i]];
for (int i = 1; i <= m; ++i) Sum[i] = 0;
for (int i = 1; i <= n; ++i) ++Sum[VC[i]];
for (int i = 2; i <= m; ++i) Sum[i] += Sum[i - 1];
for (int i = n; i >= 1; --i) SA[Sum[VC[i]]--] = y[i];
t = x; x = y; y = t;
x[SA[1]] = 1; p = 1;
for (int i = 2; i <= n; ++i)
x[SA[i]] = Cmp(y, SA[i], SA[i - 1], j) ? p : ++p;
}
for (int i = 1; i <= n; ++i) Rank[SA[i]] = i; //GetHeight
int h, o;
h = 0;
for (int i = 1; i <= n; ++i) {
if (Rank[i] == 1) continue;
o = SA[Rank[i] - 1];
while (A[i + h] == A[o + h]) ++h;
Height[Rank[i]] = h;
if (h > 0) --h;
}
} int main()
{
scanf("%s%s", S1 + 1, S2 + 1);
l1 = strlen(S1 + 1);
l2 = strlen(S2 + 1);
for (int i = 1; i <= l1; ++i)
A[i] = S1[i] - 'a' + 1;
A[l1 + 1] = 27;
for (int i = 1; i <= l2; ++i)
A[l1 + 1 + i] = S2[i] - 'a' + 1;
A[l1 + 1 + l2 + 1] = 28;
n = l1 + 1 + l2 + 1;
DA(A, n, 28);
Ans = 0;
for (int i = 2; i <= n - 1; ++i) {
if (Height[i] > Ans) {
if (SA[i] <= l1 && SA[i - 1] > l1 + 1) Ans = Height[i];
if (SA[i] > l1 + 1 && SA[i - 1] <= l1) Ans = Height[i];
}
}
printf("%d\n", Ans);
return 0;
}

  

[POJ 2774] Long Long Message 【后缀数组】的更多相关文章

  1. POJ 2774 Long Long Message 后缀数组

    Long Long Message   Description The little cat is majoring in physics in the capital of Byterland. A ...

  2. poj 2774 Long Long Message 后缀数组基础题

    Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 24756   Accepted: 10130 Case Time Limi ...

  3. poj 2774 Long Long Message 后缀数组LCP理解

    题目链接 题意:给两个长度不超过1e5的字符串,问两个字符串的连续公共子串最大长度为多少? 思路:两个字符串连接之后直接后缀数组+LCP,在height中找出max同时满足一左一右即可: #inclu ...

  4. POJ 2774 Long Long Message 后缀数组模板题

    题意 给定字符串A.B,求其最长公共子串 后缀数组模板题,求出height数组,判断sa[i]与sa[i-1]是否分属字符串A.B,统计答案即可. #include <cstdio> #i ...

  5. POJ 2774 Long Long Message (后缀数组+二分)

    题目大意:求两个字符串的最长公共子串长度 把两个串接在一起,中间放一个#,然后求出height 接下来还是老套路,二分出一个答案ans,然后去验证,如果有连续几个位置的h[i]>=ans,且存在 ...

  6. POJ - 2774 Long Long Message (后缀数组/后缀自动机模板题)

    后缀数组: #include<cstdio> #include<algorithm> #include<cstring> #include<vector> ...

  7. POJ 2774 Long Long Message ——后缀数组

    [题目分析] 用height数组RMQ的性质去求最长的公共子串. 要求sa[i]和sa[i-1]必须在两个串中,然后取height的MAX. 利用中间的字符来连接两个字符串的思想很巧妙,记得最后还需要 ...

  8. PKU 2774 Long Long Message (后缀数组练习模板题)

    题意:给你两个字符串.求最长公共字串的长度. by:罗穗骞模板 #include <iostream> #include <stdio.h> #include <stri ...

  9. 后缀数组(模板题) - 求最长公共子串 - poj 2774 Long Long Message

    Language: Default Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 21 ...

随机推荐

  1. 开发库比较(3) - Mobile Web 开发 - Sencha, jquerymobiel, phonejs, jqtouch, jqmobi

    我们一直坚信Html/css在界面上最终会一统江湖,因为在众多的界面编写中,qt,gtk,wpf,win form, wxwidgets等等,只有Html/CSS是真正拥有统一标准,只有这个有潜力作用 ...

  2. MapReduce输出格式

    针对前面介绍的输入格式,MapReduce也有相应的输出格式.默认情况下只有一个 Reduce,输出只有一个文件,默认文件名为 part-r-00000,输出文件的个数与 Reduce 的个数一致. ...

  3. android开发之使用Messenger实现service与activity交互

    service与activity交互的方式有多种,这里说说使用Messenger来实现两者之间的交互. Service程序 public class MessengerService extends ...

  4. clearTimeout(timeoutfunc) 是否有必要执行

    当使用 setTimeout() 方法的时候,是否必须执行 clearTimeout() ? 在 setTimeout() 内的函数执行之前,如果想要阻止执行该方法,是有必要执行 cleartTime ...

  5. ASP.NET 打包下载文件

    使用的类库为:ICSharpCode.SharpZipLib.dll 一种是打包整个文件夹,另一种是打包指定的多个文件,大同小异: using ICSharpCode.SharpZipLib.Zip; ...

  6. C# 内存管理优化实践

    内存优化畅想系列文章已经结束了,很多读者读完之后可能觉得“然并卵”,毕竟都是给微软提的建议而已,现在都没有实现.那么为了优化内存,有没有什么我们现在就能用的技巧呢?我的答案是:有.网上关于.net内存 ...

  7. HTML5 TypeArray和Unicode 字符之间转换

    1.Uint32Array测试成功 // Uint32Array 测试成功 //字符串转为ArrayBuffer对象 function strToab() { var str = '张三丰'; var ...

  8. 开通博客第一天 (先发一些android(java)常见异常信息

    常见异常: java.lang.AbstractMethodError抽象方法错误.当应用试图调用抽象方法时抛出. java.lang.AssertionError断言错.用来指示一个断言失败的情况. ...

  9. RecyclerView实例-实现可下拉刷新上拉加载更多并可切换线性流和瀑布流模式(1)

    摘要 最近项目有个列表页需要实现线性列表和瀑布流展示的切换,首先我想到的就是上 [RecyclerView],他本身已经很好的提供了三种布局方式,只是简单做个切换应该是很简单的事情,如果要用Recyc ...

  10. nodejs开发环境sublime配置

    前端时间使用webstorm搭建一个node.js的学习环境,感觉非常强大.不过由于其加载的速度,每次让都让我抓狂.后来我找到了一个sublime.虽说3.0以上是收费的,2.0暂时免费.官方的不对s ...