详见 F:\工程硕士\d电子书\26 数据挖掘

小结:

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

机器学习10大经典算法.doc的更多相关文章

  1. 机器学习10种经典算法的Python实现

    广义来说,有三种机器学习算法 1. 监督式学习 工作机制:这个算法由一个目标变量或结果变量(或因变量)组成.这些变量由已知的一系列预示变量(自变量)预测而来.利用这一系列变量,我们生成一个将输入值映射 ...

  2. ICDM评选:数据挖掘十大经典算法

    原文地址:http://blog.csdn.net/aladdina/article/details/4141177 国际权威的学术组织the IEEE International Conferenc ...

  3. Atitit 图像处理30大经典算法attilax总结

    Atitit 图像处理30大经典算法attilax总结 1. 识别模糊图片算法2 2. 相似度识别算法(ahash,phash,dhash)2 3. 分辨率太小图片2 4. 横条薯条广告2 5. 图像 ...

  4. JS的十大经典算法排序

    引子 有句话怎么说来着: 雷锋推倒雷峰塔,Java implements JavaScript. 当年,想凭借抱Java大腿火一把而不惜把自己名字给改了的JavaScript(原名LiveScript ...

  5. 数据挖掘十大经典算法(5) 最大期望(EM)算法

    在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...

  6. 数据挖掘领域十大经典算法之—C4.5算法(超详细附代码)

    https://blog.csdn.net/fuqiuai/article/details/79456971 相关文章: 数据挖掘领域十大经典算法之—K-Means算法(超详细附代码)        ...

  7. C语言的10大基础算法

    C语言的10大基础算法 算法是一个程序和软件的灵魂,作为一名优秀的程序员,只有对一些基础的算法有着全面的掌握,才会在设计程序和编写代码的过程中显得得心应手.本文包括了经典的Fibonacci数列.简易 ...

  8. 10大经典CSS3菜单应用欣赏

    很多时候,我们的网页菜单需要个性化,从而来适应各种行业的用户视觉操作体验.本文将带领大家一起来欣赏10个非常经典的CSS3菜单应用,菜单涉及到动画菜单.Tab菜单.面包屑菜单等. 1.CSS3飘带状3 ...

  9. 十大经典算法 Python实现

    十大经典排序算法(python实现)(原创) 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 O(n+k) O(n+k ...

随机推荐

  1. Google Developers中国网站发布!(转)

    Google Developers 中国网站是特别为中国开发者而建立的,它汇集了 Google 为全球开发者所提供的开发技术资源,包括 API 文档.开发案例.技术培训的视频.并涵盖了以下关键开发技术 ...

  2. JAVA深入研究——Method的Invoke方法

    http://www.cnblogs.com/onlywujun/p/3519037.html 在写代码的时候,发现Method可以调用子类的对象,但子类即使是改写了的Method,方法名一样,去调用 ...

  3. 解构控制反转(IoC)和依赖注入(DI)

    1.控制反转 控制反转(Inversion of Control,IoC),简言之就是代码的控制器交由系统控制,而不是在代码内部,通过IoC,消除组件或者模块间的直接依赖,使得软件系统的开发更具柔性和 ...

  4. (三)映射对象标识符(OID)

    所有项目导入对应的hibernate的jar包.mysql的jar包和添加每次都需要用到的HibernateUtil.java 第一节:Hibernate 用对象标识符(OID)来区分对象 例子: h ...

  5. IOS开发中针对UIImageView的几种常用手势

    // //  ViewController.m //  05-手势 // //  Created by wanghy on 15/9/21. //  Copyright (c) 2015年 wangh ...

  6. 反射 介绍System.Type类

    本节先介绍system.Type类,通过这个类可以访问关于任何数据类型的信息. 1. system.Type类以前把Type看作一个类,但它实际上是一个抽象的基类.只要实例化了一个Type对象,实际上 ...

  7. JavaScript 学习笔记-- ES6学习(一)介绍以及Babel的使用

    本文摘自阮一峰老师的<ECMAScript 6入门>,原文地址:http://es6.ruanyifeng.com/#docs/intro ECMAScript 6 是一个泛指,含义是5. ...

  8. 用java制作日历,想休息的时候看一看离周末还有几天!

    呀!忙碌的每一天,都忘记了明天就是我们愉快周末了.今天没有朋友的闲聊的话,明天处在绷紧的状态呢!还有朋友提到,所有今天来跟大家分享一下用java来编写日历表,累了想休息了的时候,打开看看,还有几天到周 ...

  9. Linux中的堡垒--iptables

    iptables的构成(四表五链)     表         filter:过滤数据包         nat :转换数据包的源或目标地址         mangle:用来mangle包,改变包的 ...

  10. jQuery设置checkbox全选(区别jQuery版本)

    jQuery设置checkbox全选在网上有各种文章介绍,但是为什么在我们用他们的代码的时候就没有效果呢? 如果你的代码一点错误都没有,先不要急着怀疑人家代码的正确性,也许只是人家跟你用的jQuery ...