BZOJ_2179_FFT快速傅立叶_(FFT)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=2179
超大整数乘法
分析
FFT模板题.
把数字看成是多项式,x是10.然后用FFT做多项式乘法,最后进位就好了.
注意:
1.进位前要把每一位加0.5(或者更小),然后向下取整,应该是浮点数的计算误差吧...
#include <bits/stdc++.h>
using namespace std; const int maxn=;
const double pi=acos(-1.0);
int len;
int rev[maxn],ans[maxn];
char str[maxn];
struct cp{//复数(complex)
double r,i;
cp(double r_=0.0,double i_=0.0):r(r_),i(i_){}
cp operator + (const cp &x) const { return cp(r+x.r,i+x.i); }
cp operator - (const cp &x) const { return cp(r-x.r,i-x.i); }
cp operator * (const cp &x) const { return cp(r*x.r-i*x.i,r*x.i+i*x.r); }
}a[maxn],b[maxn],A[maxn];
void brc(int &len){//二进制逆序置换(bit-reverse-copy)
memset(rev,-,sizeof rev);
int k=,l=;
while(k<len) k<<=,l++;
len=k;
rev[]=; rev[len-]=len-;
for(int i=;i<len-;i++){
if(rev[i]!=-) continue;
int x=i,y=,m=l;
while(m--) y<<=, y|=(x&), x>>=;
rev[i]=y; rev[y]=i;
}
}
void dft(cp *a,int n,int flag){//离散傅里叶变换(discrete-Fourier-transform)
for(int i=;i<n;i++) A[rev[i]]=a[i];
for(int i=;i<n;i++) a[i]=A[i];
for(int m=;m<=n;m<<=){
cp wn(cos(2.0*pi/m*flag),sin(2.0*pi/m*flag));
for(int i=;i<n;i+=m){
cp w(1.0,0.0); int k=m>>;
for(int j=;j<k;j++){
cp t=w*a[i+j+k], u=a[i+j];
a[i+j]=u+t;
a[i+j+k]=u-t;
w=w*wn;
}
}
}
if(flag==-)for(int i=;i<n;i++) a[i].r/=n;
}
void readin(cp *a){
scanf("%s",str);
int l=strlen(str);
for(int i=;i<l;i++) a[i].r=str[l--i]-'';
}
int main(){
scanf("%d",&len);
len=len*-;
readin(a); readin(b);
brc(len);
dft(a,len,); dft(b,len,);
for(int i=;i<len;i++) a[i]=a[i]*b[i];
dft(a,len,-);
for(int i=;i<len;i++) ans[i]=a[i].r+0.5;
for(int i=;i<len;i++) ans[i+]+=ans[i]/, ans[i]%=;
len++;
while(!ans[len]&&len) len--;
for(int i=len;i>=;i--) printf("%d",ans[i]);
return ;
}
2179: FFT快速傅立叶
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 2567 Solved: 1308
[Submit][Status][Discuss]
Description
Input
第二行描述一个位数为n的正整数x。
第三行描述一个位数为n的正整数y。
Output
Sample Input
3
4
Sample Output
数据范围:
n<=60000
HINT
Source
BZOJ_2179_FFT快速傅立叶_(FFT)的更多相关文章
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
- 【BZOJ】2179: FFT快速傅立叶(fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=2179 fft裸题.... 为嘛我的那么慢....1000多ms.. #include <cst ...
- 快速傅立叶变换FFT模板
递归版 UOJ34多项式乘法 //容易暴栈,但是很好理解 #include <cmath> #include <iostream> #include <cstdio> ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- BZOJ_2194_快速傅立叶之二_(FFT+卷积)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2194 给出序列\(a[0],a[1],...,a[n-1]\)和\(b[0],b[1],... ...
- $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...
- 快速傅立叶变换(FFT)
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶
第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...
随机推荐
- 排序算法THREE:归并排序MergeSort
/** *归并排序思路:分治法思想 O(nlogn) * 把数组一分为二,二分为四 * 四和为二,二和为一 * */ /** * 归并排序主方法 *@params 待排序的数组 *@params 初始 ...
- Java知识总结--三大框架
1 应用服务器有哪些:weblogic,jboss,tomcat 2 Hibernate优于JDBC的地方 1)对jdbc访问数据库进行了封装,简化了数据访问层的重复代码 2)Hibernate 操作 ...
- mysql 之权限介绍
转自:http://tech.it168.com/a2010/0114/837/000000837456_all.shtml 一.MySQL授权表概述首先从全局开始,如果全局的是允许的,即在 user ...
- pc telnet 登录 android 系统
前提是:1) 手机已经root,且装有busybox,2) 还装有至少一款terminal(模拟终端)软件,手机连wifi路由器.3) 还要有一些基础常识,比如linux命令,telnet.这里模拟终 ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- JAVA学习资料整理
今天偶然间发现之前一个群里发过的一篇关于JAVA学习资料的东西.本着服务大众的精神,搬来了博客园: <JAVA编程思想>第四版(英文原版) 下载地址:http://115.com/file ...
- Vijos p1002 过河 离散化距离+区间DP
链接:https://vijos.org/p/1002 题意:一条长度为L(L <= 1e9)的桥上有N(1<= N <= 100)颗石头.桥的起点为0终点为L.一只青蛙从0开始跳, ...
- 闲谈前端编码解码、C#编码解码。
最近做项目,出现中文乱码的问题,特地研究一下. GB2312,指的是中文 UTF8,指的是国标,包含中文.英文. 但是通过JQuery.ajax的Get.Post,如果直接传递中文或者特殊字符的特使字 ...
- CODEVS 1004四子连棋
[题目描述 Description] 在一个4*4的棋盘上摆放了14颗棋子,其中有7颗白色棋子,7颗黑色棋子,有两个空白地带,任何一颗黑白棋子都可以向上下左右四个方向移动到相邻的空格,这叫行棋一步,黑 ...
- 1008: [HNOI2008]越狱
n个人,m种信仰: 问你相邻的人信仰不同的情况有多少种? 首先第一个人有m种选择,第二个人有m-1种选择,后面所有的人都只有m-1种选择: 所以结果就是m^n-m*(m-1)^(n-1) #inclu ...