1328 - A Gift from the Setter
 
Problem setting is somewhat of a cruel task of throwing something at the contestants and having them scratch their head to derive a solution. In this problem, the setter is a bit kind and has decided to gift the contestants an algorithm which they should code and submit. The C/C++ equivalent code of the algorithm is given below:
long long GetDiffSum( int a[], int n )
{
long long sum = ;
int i, j;
for( i = ; i < n; i++ )
for( j = i + ; j < n; j++ )
sum += abs( a[i] - a[j] ); // abs means absolute value
return sum;
}

The values of array a[] are generated by the following recurrence relation:

a[i] = (K * a[i-1] + C) % 1000007 for i > 0

where KC and a[0] are predefined values. In this problem, given the values of K, C, n and a[0], you have find the result of the function

"long long GetDiffSum( int a[], int n )"

But the setter soon realizes that the straight forward implementation of the code is not efficient enough and may return the famous "TLE" and that's why he asks you to optimize the code.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains four integers K, C, n and a[0]. You can assume that (1 ≤ K, C, a[0] ≤ 104) and (2 ≤ n ≤ 105).

Output

For each case, print the case number and the value returned by the function as stated above.

Sample Input

Output for Sample Input

2

1 1 2 1

10 10 10 5

Case 1: 1

Case 2: 7136758

 
 
 
 
 
 
先根据递推式求出每一项,再nlogn求出两两只差绝对值的和。

nlogn求差的绝对值之和:
假设有5个数:a[1],a[2],a[3],a[4],a[5],则:
先排序、然后每次把每个数后面的数与其作差、
比如考虑a[1]时、则算出a[2]-a[1],a[3]-[1],a[4]-a[1],a[5]-a[1],
其中:a[3]-a[1]=a[3]-a[2]+a[2]-a[1]
a[4]-a[1]=a[4]-a[3]+a[3]-a[2]+a[2]-a[1]
a[5]-a[1]=a[5]-a[4]+a[4]-a[3]+a[3]-a[2]+a[2]-a[1]
这样显然可以直接得出:a[2]-a[1]算了4次,a[3]-a[2]算了3次,a[4]-a[3]算了2次,a[5]-a[4]算了1次。
然后再依次考虑a[2]时,                        a[3]-a[2]算了3次,a[4]-a[3]算了2次,a[5]-a[4]算了1次。
然后再依次考虑a[3]时,                                                 a[4]-a[3]算了2次,a[5]-a[4]算了1次。
然后再依次考虑a[4]时,                                                                          a[5]-a[4]算了1次。
统计一下:a[2]-a[1]算了1*4次,a[3]-a[2]算了2*3次,a[4]-a[3]算了3*2次,a[5]-a[4]算了4*1次。

综上、O(nlogn)排序,O(n)统计

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define ll long long
#define INF 0x7fffffff
#define MOD 1000007
#define N 100010 ll sum;
ll a[N];
ll b[N];
ll k,c,n; int main()
{
ll T,i,j,iCase=;
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld%lld",&k,&c,&n,&a[]);
for(i=;i<n;i++)
{
a[i]=(k*a[i-]+c)%MOD;
}
sort(a,a+n);
sum=;
for(i=;i<n;i++)
{
sum+=(n-i)*i*(a[i]-a[i-]);
}
printf("Case %lld: %lld\n",iCase++,sum);
}
return ;
}

[light oj 1328] A Gift from the Setter的更多相关文章

  1. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  2. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

  3. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  4. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  5. light oj 1007 Mathematically Hard (欧拉函数)

    题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...

  6. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  7. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  8. Jan's light oj 01--二分搜索篇

    碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...

  9. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

随机推荐

  1. mysql innodb 数据打捞(二)innodb 页面打捞编程

    有了页面的结构和特征,需要编程实现数据库页面的打捞工作: 为了方便windows and linux 的通用,计划做成C语言的控制台应用,并且尽量只用ansi c;关于多线程,计划做成多线程的程序,最 ...

  2. linux 下使用crontab 定时打包日志并删除已被打包的日志

    crontab是和用户相关的,每个用户有自己对应的crontab . cron是Linux下的定时执行工具,以下是重启/关闭等等的命令 #/sbin/service crond start //启动服 ...

  3. 改善EF代码的方法(下)

    本节,我们将介绍一些改善EF代码的方法,包括编译查询.存储模型视图以及冲突处理等内容. > CompiledQuery 提供对查询的编译和缓存以供重新使用.当相同的查询需要执行很多遍的时候,那么 ...

  4. Python3 正则表达式

    字符串是编程时涉及到的最多的一种数据结构,对字符串进行操作的需求几乎无处不在.比如判断一个字符串是否是合法的Email地址,虽然可以编程提取@前后的子串,再分别判断是否是单词和域名,但这样做不但麻烦, ...

  5. 请求与通配符 mime 映射相匹配。请求映射到静态文件处理程序。如果有不同的前提条件,请求将映射到另一个处理程序。

    打开IIS管理器,找到“处理程序映射”,在列表右击选择“添加脚本映射”即可.eg:*.aspx,将该类型的页面的处理程序映射为“%windir%\Microsoft.NET\Framework\v4. ...

  6. thinkphp分页实现

    以上为我对于thinkphp分页的实现效果,两种方法,一种调用公共函数中的函数方法(参考http://www.cnblogs.com/tianguook/p/4326613.html),一种是在模型中 ...

  7. 如何配置SSH Keys登录

    SSH Keys简介: 使用SSH Keys的登录远程虚拟云主机的方式比单独使用密码登录更加安全,简单的密码很可能被暴力破解.而目前来看采用长度大于1024位的RSA加密算法,几乎是不可能被破解的.S ...

  8. linux内核驱动模型

    linux内核驱动模型,以2.6.32内核为例.(一边写一边看的,有点乱.) 1.以内核对象为基础.用kobject表示,相当于其它对象的基类,是构建linux驱动模型的关键.具有相同类型的内核对象构 ...

  9. PL/SQL — 函数

    函数通常用于返回特定的数据.其实质是一个有名字的PL/SQL块,作为一个schema对象存储于数据库,可以被反复执行.函数通常被作为一个表达式来调用或存储过程的一个参数,具有返回值.   一.建立函数 ...

  10. python 操作mongodb数据库模糊查询

    # -*- coding: utf-8 -*-import pymongoimport refrom pymongo import MongoClient #创建连接#10.20.66.106clie ...