卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名。
卡特兰数的前几个数
前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190
在这里我只详细证明一个例子:
(和我后面要写的一个HD题目有关).(HD1133题)
即排队买票问题(出栈次序问题):
一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
有2n个人排成一行进入公园。入场费1元。其中只有n个人有一张1元钞票,另外n人只有2元钞票,剧院无其它钞票,问有多少中方法使得只要有2元的人买票,售票处就有1元的钞票找零?(将持1元者到达视作将1元入栈,持2元者到达视作使栈中某1元出栈)
不难看出,该题求的是左端点为首元素的任意区间内,1的个数大于等于2的个数。
方法一:折现法
可以认为问题是,任意两种操作,持1元者买票是操作一,持2元买票者是操作二。要求每种操作的总次数一样,且进行第k次操作2前必须先进行至少k次操作1。我们假设一个人在原点,操作1是此人沿右上角45°走一个单位(一个单位设为根号2,这样他第一次进行操作1就刚好走到(1,1)点),操作2是此人沿右下角45°走一个单位。第k次操作2前必须先进行至少k次操作1,就是说明所走出来的折线不能跨越x轴走到y=-1这条线上!在进行n次操作1和n此操作2后,此人必将到到达(2n,0)!若无跨越x轴的限制,折线的种数将为C(2n,n),即在2n次操作中选出n次作为操作1的方法数。
现在只要减去跨越了x轴的情况数。对于任意跨越x轴的情况,必有将与y=-1相交。找出第一个与y=-1相交的点k,将k点以右的折线根据y=-1对称(即操作1与操作2互换了)。可以发现终点最终都会从(2n,0)对称到(2n,-2)。由于对称总是能进行的,且是可逆的。我们可以得出所有跨越了x轴的折线总数是与从(0,0)到(2n,-2)的折线总数。而后者的操作2比操作1要多0-(-2)=2次。即操作1为n-1,操作2为n+1。总数为C(2n,n-1)。
这个证明的关键就是最终一定会到达(2n,0)这个点。
对于不满足情况的方案,它一定会越过y=-1,捉住这个特点,我们可将求不合法的方案数这个问题换个说法来:从(0,0)到(2n,-2)一共有多少种走法?这个走法数就是C(2n,n-1)因为走右下角的要多走2步,同时一共只走2n步,那就右下角走n+1步,方案法就是2n选n-1.
合法数=C(2n,n)-C(2n,n-1);
方法二:
还可以等价为求从A点到B点不超过(可接触)红色对角线的最短路径的数量。
如图,易知所有超过红色红色对角先的路径都会碰到绿线。
对A做关于绿线的对称点A’。则A’到B点的路径总数即为非法路径总数。
合法路径数=总路径数-非法路径数=C(2n,n)-C(2n,n-1)。
每個人都是不一樣的,所以需要全排列* n!*n!
可以推广到一般形式,1元的m人,2元的n人。
( C(m+n,n) - C(m+n,m+1) ) * m! * n!=
( C(m+n,n) - C(m+n,n-1) ) * m! * n!
卡特兰数(Catalan Number) 算法、数论 组合~的更多相关文章
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- 卡特兰数 catalan number
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...
- 卡特兰数(Catalan Number) 学习笔记
一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...
- 【知识总结】卡特兰数 (Catalan Number) 公式的推导
卡特兰数的英文维基讲得非常全面,强烈建议阅读! Catalan number - Wikipedia (本文中图片也来源于这个页面) 由于本人太菜,这里只选取其中两个公式进行总结. (似乎就是这两个比 ...
- [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- ACM数论-卡特兰数Catalan
Catalan 原理: 令h(0)=1,h(1)=1,catalan 数满足递归式: (其中n>=2) 另类递推公式: 该递推关系的解为: (n=1,2,3,...) 卡特兰数的应用实质上都是递 ...
- 卡特兰数 Catalan 笔记
一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>= ...
- 出栈顺序 与 卡特兰数(Catalan)的关系
一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3 ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2 ...
随机推荐
- Java写一个简单学生管理系统
其实作为一名Java的程序猿,无论你是初学也好,大神也罢,学生管理系统一直都是一个非常好的例子,初学者主要是用数组.List等等来写出一个简易的学生管理系统,二.牛逼一点的大神则用数据库+swing来 ...
- Java线程:新特征-线程池
Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利.为了编写高效稳定可靠的多线程程序 ...
- js EasyUI前台 全选的实现
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWcAAAEQCAIAAADj/SKjAAAgAElEQVR4nO1dz48ry1W+/5N3swaFEP ...
- java_jdbc_oracle简单总结(2016-11-23)
JDBC连接oracle的实例 好久没写过jdbc,基本忘干净了,随意插一个图,简单学习一下.然后干别的..... 使用jdbc操作数据库步骤是固定的 1.将驱动包导入到数据库,每一个数据库的驱动包都 ...
- 求两个数的最大公约数(Euclid算法)
求两个数 p 和 q 的最大公约数(greatest common divisor,gcd),利用性质 如果 p > q, p 和 q 的最大公约数 = q 和 (p % q)的最大公约数. 证 ...
- windows8一直更新不了的问题————解决方案
以下是微软官方工程师的详细解答: 尊敬的佐先生: 您好! 感谢您联系微软技术支持!我是微软技术支持工程师,我姓张.我将协助您解决有关问题.您的问题编号是SRX 1274238225 对于您当前的更新问 ...
- php hook example
http://www.thinkphp.cn/code/337.html http://blog.micxp.com/index.php/archives/63/
- sharepoint的webpart开发
前言 以前没有接触sharepoint感觉这东西好陌生,只是知道.来公司这段时间,也没有参加开发.今天自己简单的实现了一下这个开发过程,webpart部分的. 过程 其实webpart可以理解为一个放 ...
- gulp 之一 安装及简单CSS,JS文件合并压缩
最近研究了一下gulp构建工具,发现使用起来比grunt顺手一些.(个人感受),以下是grunt和gulp构建方式和原理: grunt 基于文件方式构建,会把文件先写到临时目录下,然后进行读文件,修改 ...
- swift官方文档中的switch中case let x where x.hasSuffix("pepper")是什么意思?
在官方文档中,看到这句.但不明白什么意思. let vegetable = "red pepper" switch vegetable { case "celery&qu ...