《Principles of Mathematical Analysis》-chaper1-实数系与复数系
今天我们开始简单的介绍数学分析这门课程,参考教材是Walter Rudin著的《Principles of Mathematical Analysis》
对于一门新课你最开始可能会问的是:这门课讲述了一个什么故事?简单的翻阅了一下这本书的目录,数学分析这一块,里边有微积分里的东西:微分法、级数、多元函数这类东西,当然也有离散数学中一些集合、关系的东西,因此,我们不能妄下论断说,数学分析就是带证明的微积分,但是,数学分析到底是讲述了一个怎样的故事呢?让我们怀揣着这个问题走进这门课。
数学作为工具性的学科,一个重要的使命就是搞清楚一些生活中习以为常的东西。比如说数这个概念,就经历了整数系->有理数系->实数系->复数系的演变过程,对数系的不断扩充,是伴随这一些问题的不断涌现。比如这里我们将举出例子会回答你这样的疑问:数学家们为什么有理数系扩充到了实数系?
在这之前,我们引入最基础的概念,有理数系分为整数系和分数系,而实数系又分为有理数系和无理数系。

承接上文,我们看到数轴上仅仅是有理数还不能够,我们需要引入无理数,构成整个实数系。通过Q(有理数系)构造出R(实数系)是一个非常繁琐的过程,本书在第一章节的章末给出。
这里基于我们从Q构造出来的R,来论证一系列定理、命题。



《Principles of Mathematical Analysis》-chaper1-实数系与复数系的更多相关文章
- 数学分析理论(rudin版)笔记:实数系和复数系.2:抄书版
有理数(rational number)记为 Q,实数记为 R 虽然任意两个不同的有理数间还有一个有理数,但是有理数集中还是会有 "间隙",而实数集填补了这些间隙. 集合(set) ...
- 数学分析理论(rudin版)笔记:实数系和复数系.1
导引 有理数集是"稀疏的"和"稠密的". 选择公理 考虑以下问题:容易找到两个无理数 a, b 使 a + b 为有理数,或者使 ab 为有理数,但是能否使得 ...
- Lecture notes of Mathematical analysis
Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...
- "Mathematical Analysis of Algorithms" 阅读心得
"Mathematical Analysis of Algorithms" 阅读心得 "Mathematical Analysis of Algorithms" ...
- 《Mathematical Analysis of Algorithms》中有关“选择第t大的数”的算法分析
开头废话 这个问题是Donald.E.Knuth在他发表的论文Mathematical Analysis of Algorithms中提到的,这里对他的算法分析过程给出了更详细的解释. 问题描述: 给 ...
- Reviewing notes 2.1 of Mathematical analysis
Chapter2 Numerical sequence and function Cartesian product set If S and T are sets,then the cartesia ...
- 《Mathematical Analysis of Algorithms》中有关“就地排列”(In Situ Permutation)的算法分析
问题描述 把数列\((x_1,x_2,\cdots,x_n)\)变换顺序为\((x_{p(1)},x_{p(2)},\cdots,x_{p(n)})\),其中\(p\)是\(A=\{1,2,3,\cd ...
- 【分享】《美国数学本科生,研究生基础课程参考书目(个人整理)》[DJVU][VERYCD]
目录: 第一学年 几何与拓扑: 1.James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级: 2.Basic Topology by Armstrong ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- SQL Server2008 附加数据库失败 错误代码5120
由于目录权限不够导致 ,解决办法:将文件所在的文件夹增加everyone 并且赋予完全控制权限问题解决
- linux创建守护进程
守护进程deamon 是一个后台进程,无需用户输入就能运行,用来在系统后台提供某种服务. 常见的守护进程有Wbe服务器.邮件服务器以及数据库服务器等等.守护进程不能控制终端,所以任何的输入和输出都需要 ...
- 实例分析jdom和dom4j的使用和区别
对于xml的解析和生成,我们在实际应用中用的比较多的是JDOM和DOM4J,下面通过例子来分析两者的区别(在这里我就不详细讲解怎么具体解析xml,如果对于xml的解析看不懂的可以先去看下我之前关于do ...
- 调整ListBox控件的行间距及设置文本格式
首先要将该控件的DrawMode属性为OwnerDrawVariable 添加DrawItem重绘事件:private void listBox1_DrawItem(object sender, Dr ...
- div section article aside的理解
div 是一个大的容器 内部可以包含header main nav aside footer等标签 没有语义,多用于为脚本添加样式 section的语义比div语义强些,用于主题性比较强的内容,比如一 ...
- CSS一级导航-天蓝色(带阴影)
一款亮丽的导航,能给网站一个画龙点睛的作用.导航在指引用户搜寻内容时,还能改变用户浏览网站的心情,浏览网站也像一场旅行,有创意的导航栏让用户欣赏起来也会更加愉悦,增加对网站的兴趣. 本人不擅长美工制作 ...
- Android特效--粒子效果之雨
1. 单个雨点的行为 2. 完善雨点的行为和构造下雨场景 3. 在XML中定义可以控制下雨的属性 --------------------------------------------------- ...
- python中的buildin函数详解(第一篇)
这会是很长的一个帖子,因为我打算从python最基础的东西开始,尝试去完全的掌握它,buildin中有一些常用的函数比如 abs, open, setattr, getattr, 大家都很了解他们的用 ...
- uboot移植之环境变量在NandFlash
一.概述 u-boot环境变量可以设置在Norflash上,也可以在NandFlash上. 倘若环境变量在NorFlash上,再假设S3C2440从NorFlash启动,是能正确从NorFlash上读 ...
- sizeof()用法
参考:sizeof_百度百科 sizeof()用法汇总(经典) 声明:本文是笔者抽出对自己有用的细节,对前两文的总结. 1.sizeof概念 sizeof是C语言中判断数据类型或者表达式长度符:不是一 ...