购买饲料

Description

如约翰在镇上,沿着公路开车回家,他的家离起点有E公里。他顺便准备买K吨饲料回家。运送饲料是要花油钱的,如果他的车上有X吨饲料,行驶一公里需要X^2元,行驶D公里就 需要DX^2元。约翰可以从N家商店购买饲料,所有商店都在公路边上,第i家店距离起点Xi公里,饲料单价为每吨Ci元,库存为Fi吨。

约翰可以选择在任意商店里购买任意多的饲料,只要那家店的还有货就可以了。保证所有商店的饲料库存之和不会少于K,为了带K吨饲料回家,约翰最少的花费是多少呢?

举个例子,假设有三家商店,情况如下所示:

坐标  X = 1  X = 3  X = 4  E = 5
库存 1 1 1
单价 1 2 2

如果约翰要买2吨饲料回家,那么他的最好选择是在离家较近的两家商店购买饲料,则花在路上的钱是1 + 4 = 5,花在商店的钱是2 + 2 = 4,共需要9元。

Input Format

第一行:三个用空格分开的整数:K,E和N,1 ≤ K ≤ 10000,1 ≤ E,N ≤ 500

第二行到N + 1行:第i + 1行有三个用空格分开的整数一个整数: Xi, Fi和Ci, 0 < Xi < E, 1 ≤ Fi ≤ 10000,1 ≤ Ci ≤ 10,000,000

Output Format

第一行:单个整数,表示约翰购买和运送饲料的最小花费

--------------------------------------------------------------

正解=动归+队列优化

先考虑无优化的Dp

状态:f[i][j] 表示 在 i 这个位置且车上有 j 吨饲料至少要多少钱

转移:  f[i+1][j]=f[i][j-g]+C[i]*g+j*j*( X[i+1]-X[i] )( 0<=g<=F[i] )

输出:f[n+1][k](设n+1为家)

显然O(N*K*F)必然会TLE

考虑优化

设 g‘=j-g 则 j-g’=g( 0<=g<=F[i] ),

g 增加 ,g‘ 减少,

则上面的 f[i+1][j] 可表示成

f[i+1][j]=f[i][ g’ ]+C[i]*( j-g' )+j*j*( X[i+1]-X[i])

=f[i][ g’ ]+ C[i]*j - C[i]*g' +j*j*( X[i+1]-X[i] )

( j-F[i] <= g' <=j ) (g' 必然小于 j,无需处理)

显然 C[i]*j 和 j*j*( X[i+1]-X[i] ) 为定值,

f[i+1][j]的值由 f[i][ g’ ] - C[i]* g' 决定,

可构造队列q(元素为 g‘ ):

从 0 到 f[i]一一进队(j)

如果 j-q.front()>F[i] 出队

j 进队,保持队列递减

f[i+1][j]=f[i][q[head] ]+ C[i]*( j-q[head] ) - C[i]*g' +j*j*( X[i+1]-X[i] )

复杂度O(N*K)不会 T 了- =(Orz Ak God)

代码如下:

 #include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<iostream>
#include<queue>
#define LL long long
#define INF 99999999999LL
struct Cow{
int x,tot,c;
}a[];
bool cmp(const Cow&X,const Cow&Y){
return X.x<Y.x;
}
int K,E,n,head,tail;
long long f[][];
int q[];
int main(){
scanf("%d%d%d",&K,&E,&n);
for(int i=;i<=K;i++) f[][i]=INF;
f[][]=;
for(int i=;i<=n;i++) scanf("%d%d%d",&a[i].x,&a[i].tot,&a[i].c);
std :: sort(a+,a+n+,cmp);
a[n+].x=E;
for(int i=;i<=n;i++){
head= ;
tail=;
LL tot=a[i].tot,c=a[i].c;
for(int j=,k;j<=K;j++){
while(head<=tail&&j - q[head] > tot ) ++head;
while(head<=tail&&f[i][j]-j * c<f[i][q[tail]]-q[tail] * c) --tail ;
q[++tail]=j;
k=j-q[head];
f[i+][j]=f[i][j-k]+k*c+1LL*j*j*(a[i+].x-a[i].x);
}
}
printf("%lld",f[n+][K]);
}

----------------------------------------------------------------

修剪草坪

Description

   在去年赢得了小镇的最佳草坪比赛后,约翰变得懒惰了,再也没有修剪过草坪了。现在,新一轮的比赛又开始了,约翰希望能够再次夺冠。然而,约翰的草坪非常脏乱,因此,约翰需要让他的奶牛来完成这项工作。约翰有N头奶牛,平时排成一条直线,编号为1到N。每只奶牛的能力是不同的,第i头奶牛的能力为Ei。靠在一起的奶牛很熟悉,所以如果安排编号连续的K + 1头奶牛在一起工作,她们就会密谋罢工。因此,约翰需要你的帮助。如何挑选奶牛,才能使她们的工作能力之和最高,而且不会罢工呢?

Input Format

第一行:两个用空格隔开的整数:N和K,1 ≤ N ≤ 105,1 ≤ K ≤ N
第二行到N + 1行:第i + 1行有一个整数,表示第i头牛的能力Ei,1 ≤ Ei ≤ 109

Output Format

第一行:单个整数,表示最大的工作能力之和

----------------------------------------------------------------------------

和上题一样想考虑裸Dp
   预处理: sum[i] 表示从第一头奶牛到第 i 头奶牛的能力和,
   状态: f[i]表示到到第i头可得到的最大能力值和,
   转移: f[i]=f[j]+sum[i]-sum[j+1]
比上一题简单,很容易看出sum[i]是个定值,
按 f[j]-sum[j+1] 做单调队列即可,
Ps.注意 k=1 时的情况

代码如下:

 #include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<iostream>
#include<queue>
#define INF 99999999
#define Max(x,y) if(y>x) x=y
#define ll long long
using namespace std;
ll head,tail,q[],p[],f[],n,k,sum[],ans;
int main(){
scanf("%lld%lld",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&sum[i]);
sum[i]+=sum[i-];
q[i]=-INF;
}
head=;
tail=;
for(ll i=;i<=k;i++) {
f[i]=sum[i];
while(f[i]-sum[i+]>=q[tail]&&tail>=head) --tail;
q[++tail]=f[i]-sum[i+];
p[tail]=i;
ans=max(f[i],ans);
}
for(ll i=k+;i<=n;i++){
while(i-p[head]->k) ++head;
f[i]=max(f[i-]+sum[i]-sum[i-],q[head]+sum[i]);
while(f[i]-sum[i+]>=q[tail]&&tail>=head) --tail;
q[++tail]=f[i]-sum[i+];
p[tail]=i;
ans=max(f[i],ans);
}
printf("%lld",ans);
}

usaco 购买饲料 && 修剪草坪的更多相关文章

  1. BZOJ2442: [Usaco2011 Open]修剪草坪

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 500  Solved: 244[Submit][ ...

  2. BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )

    dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...

  3. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  4. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  5. 【BZOJ2059】Buying Feed 购买饲料

    题面 约翰开车来到镇上,他要带V吨饲料回家.如果他的车上有X吨饲料,每公里就要花费X^2元,开车D公里就需要D* X^2元.约翰可以从N家商店购买饲料,所有商店都在一个坐标轴上,第i家店的位置是Xi, ...

  6. P2627 修剪草坪

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  7. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  8. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  9. [USACO10NOV]购买饲料Buying Feed 单调队列优化DP

    题目描述 约翰开车来到镇上,他要带 KKK 吨饲料回家.运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X ...

随机推荐

  1. mini2440移植uboot-2008.10 (二) DM9000网卡驱动移植

    还是利用 mini2440移植uboot-2008.10 (一)  修改好的代码 通过观察可以发现,mini2400使用的网卡芯片是DM9000,在uboot-2008.10源码中已经支持该芯片的驱动 ...

  2. Unix环境高级编程学习笔记——fcntl

    写这篇文正主要是为了介绍下fcntl,并将我自己在学习过程中的一些理解写下来,不一定那么官方,也有错误,希望指正,共同进步- fcntl: 一个修改一打开文件的性质的函数.基本的格式是 int fcn ...

  3. 深入了解absolute

    1.absolute与float的相同的特性表现  a.包裹性  b.破坏性:父元素没有设置高或宽,父元素的高或宽取决于这个元素的内容  c.不能同时存在 2.absolute独立使用,不与relat ...

  4. CSS禁止Chrome谷歌浏览器激活输入框后自动添加橘黄色边框

    Chrome默认会为所有的输入框加上橘黄色的边框,虽然有时候可以使我们的网站看起来更友好,但对自定义的样式是有影响的.当鼠标点击输入框时,在谷歌chrome浏览器中,光标移到输入框时激活输入框会被加上 ...

  5. 规则引擎-BRMS在企业开发中的应用

    1. 什么是规则复杂企业级项目的开发以及其中随外部条件不断变化的业务规则(business logic),迫切需要分离商业决策者的商业决策逻辑和应用开发者的技术决策,并把这些商业决策放在中心数据库或其 ...

  6. sql日期函数

    1.sql常用日期函数 当我们在进行数据处理的时候,常常需要用到日期函数的计算,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配.只要数据包含的只是日期部分,运行查询就不会出问题. ...

  7. [python]字符串方法

    字符串的方法及注释 字符串的方法及注释             capitalize()   把字符串的第一个字符改为大写   casefold()   把整个字符串的所有字符改为小写   cente ...

  8. 有两个数组a,b,大小都为n;通过交换a,b中的元素,使sum(a)-sum(b)最小。

    今天在浏览网页的时候,发现了一个叫做  华为面试题(8分钟写出代码) 的链接,不确定真实性,纯属好奇,就点进去看看 这个可能是很老的题目吧,因为我看到这题目时,底下有好多评论了.提到XX排序,内存占用 ...

  9. NS实现采用的技术大多是PHP,如果采用java、 .net是否同样适用?

    SNS采用的技术可不都是PHP (不局限于国内),特别是国外的新兴公司,基本上没有再用PHP的了,国内到还是蛮常用的.简单说说我知道的几个案例:Facebook (PHP):Facebook采用PHP ...

  10. S3C2440触摸屏控制总结

    触摸屏控制原理,其实与ADC读取一个滑动变阻器中间触点电压的原理一样.只不过,读取触摸屏的X.Y方向上的电压需要两次,而且需要设置其工作模式以实现一个ADC读取两个通道的电压. S3C2440的ADC ...